久久538,国产精品第一区在线观看,特黄又色牲交视频免费…,亚洲欧美综合在线观看,一区二区三区毛片免费,欧美黄网站免费观看,女人18**毛片一级毛片

因數(shù)和倍數(shù)教學(xué)反思

時(shí)間:2022-05-02 18:35:39 教學(xué)反思 我要投稿

因數(shù)和倍數(shù)教學(xué)反思

  身為一位優(yōu)秀的教師,我們的工作之一就是教學(xué),通過教學(xué)反思可以有效提升自己的教學(xué)能力,教學(xué)反思要怎么寫呢?以下是小編精心整理的因數(shù)和倍數(shù)教學(xué)反思,僅供參考,大家一起來看看吧。

因數(shù)和倍數(shù)教學(xué)反思

因數(shù)和倍數(shù)教學(xué)反思1

  《數(shù)學(xué)課程標(biāo)準(zhǔn)》倡導(dǎo)“自主——合作——探究”的學(xué)習(xí)方式,強(qiáng)調(diào)學(xué)習(xí)是一個(gè)主動(dòng)建構(gòu)的過程。因此,應(yīng)注重培養(yǎng)學(xué)生學(xué)習(xí)的獨(dú)立性和自主性,讓學(xué)生在教師的指導(dǎo)下主動(dòng)地參與學(xué)習(xí),親歷學(xué)習(xí)過程,從而學(xué)會(huì)學(xué)習(xí)。

  1、以“理”為基點(diǎn),將學(xué)生帶入新知的學(xué)習(xí)。

  概念教學(xué)重在“理”。學(xué)生理解“因數(shù)”、“倍數(shù)”概念有個(gè)逐步形成的過程,為了促進(jìn)這一意識(shí)建構(gòu),我先讓學(xué)生通過自己已有的認(rèn)知結(jié)構(gòu),經(jīng)過“排列整齊的隊(duì)形——形成乘法算式——抽象出倍數(shù)因數(shù)概念——再由乘法或除法算式——深化理解”,使學(xué)生在輕松、簡(jiǎn)約并充滿自信中學(xué)習(xí)新知,在數(shù)與形的結(jié)合中,深刻體驗(yàn)因數(shù)倍數(shù)的概念。

  2、以“序”為站點(diǎn),培養(yǎng)學(xué)生的思維方式。

  概念形成得在“序”。學(xué)生對(duì)于概念的形成是一個(gè)由表及里、由形象到抽象的過程。當(dāng)學(xué)生對(duì)概念有了初步認(rèn)識(shí)后,讓學(xué)生探索如何找一個(gè)數(shù)的倍數(shù)的因數(shù),這既是對(duì)概念內(nèi)涵的'深化,也是對(duì)概念外延的探索。這時(shí)思維和排列上的有序性是教學(xué)的關(guān)鍵,也是本節(jié)課的深度之一。在教學(xué)時(shí),分為兩個(gè)層次:第一個(gè)層次是讓學(xué)生在已有的知識(shí)基礎(chǔ)上找12的因數(shù),并在交流中,經(jīng)歷了一個(gè)從無序到有序、從把握個(gè)別到統(tǒng)攬整體、從思維混沌走向思維清晰的過程。抓住教學(xué)的難點(diǎn)“如何找全,并且不重復(fù)不遺漏”,讓學(xué)生自由地說,再引導(dǎo)學(xué)生說出想的過程,并加以調(diào)整。表面看來僅僅是組合的變換,實(shí)質(zhì)上是思維的提高和方法的優(yōu)化,并讓學(xué)生在對(duì)比中感受“一對(duì)一對(duì)”找因數(shù)的方法,經(jīng)歷了互相討論、相互補(bǔ)充、對(duì)比優(yōu)化的過程。第二個(gè)層次是在學(xué)生已經(jīng)有了探索一個(gè)數(shù)因數(shù)的方法,具備了一定有序思考的能力之后,啟發(fā)學(xué)生“能像找因數(shù)那樣有序的找一個(gè)數(shù)的倍數(shù)”,提高了學(xué)生的思維能力。

  3、以“思”為落腳點(diǎn),培養(yǎng)學(xué)生發(fā)現(xiàn)思考的能力。

  概念的生成重在“思”,規(guī)律的形成重在“觀察”,教師如果能在此恰到好處的“引導(dǎo)”,一定會(huì)讓學(xué)生收獲更多,感悟更多。因此設(shè)計(jì)時(shí),我借助了“找自己學(xué)號(hào)的因數(shù)和倍數(shù)”這個(gè)活動(dòng),在大量的有代表性的例子面前,在學(xué)生親自的嘗試中,在有目的的對(duì)比觀察中,學(xué)生的思維被逐步引導(dǎo)到了最深處,知道了一個(gè)數(shù)的最大因數(shù)和最小倍數(shù)都是它本身,反過來也是正確的。教師在這里提供了有效的素材,可操作的素材,促使學(xué)生對(duì)所學(xué)的概念進(jìn)行了有意義的建構(gòu),促進(jìn)和發(fā)展了他們的思維。

因數(shù)和倍數(shù)教學(xué)反思2

  《公倍數(shù)和公因數(shù)》在新教材中改動(dòng)很大,新教材將數(shù)的整除中有關(guān)分解質(zhì)因數(shù)、互質(zhì)數(shù)、用短除法求幾個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)的教學(xué)內(nèi)容精簡(jiǎn)掉了,新教材突出了讓學(xué)生在現(xiàn)實(shí)情境中探究認(rèn)識(shí)公倍數(shù)和最小公倍數(shù),公因數(shù)和最大公因數(shù),突出了運(yùn)用數(shù)學(xué)概念,讓學(xué)生探索找兩個(gè)數(shù)的最小公倍數(shù)、最大公因數(shù)的方法,注重讓學(xué)生在解決問題的過程中,主動(dòng)探索簡(jiǎn)潔的方法,進(jìn)行有條理的思考,加強(qiáng)了數(shù)學(xué)與現(xiàn)實(shí)生活的聯(lián)系。教學(xué)以后與以前的教材相比,主要的`體會(huì)有以下幾點(diǎn)。

  一是在現(xiàn)實(shí)的情境中教學(xué)概念,讓學(xué)生通過操作領(lǐng)會(huì)公倍數(shù)、公因數(shù)的含義。例1教學(xué)公倍數(shù)和最小公倍數(shù),例3教學(xué)公因數(shù)和最大公因數(shù),都是形成新的數(shù)學(xué)概念,都讓學(xué)生在操作活動(dòng)中領(lǐng)會(huì)概念的含義。學(xué)生通過操作活動(dòng),感受公倍數(shù)和公因數(shù)的實(shí)際背景,縮短了抽象概念與學(xué)生已有知識(shí)經(jīng)驗(yàn)之間的距離,有利于學(xué)生運(yùn)用公倍數(shù)、最小公倍數(shù)、公因數(shù)和最大公因數(shù)的知識(shí)解決實(shí)際問題。

  二是有利于改善學(xué)習(xí)方式,便于學(xué)生通過操作和交流經(jīng)歷學(xué)習(xí)過程。在教學(xué)中,讓學(xué)生按要求自主操作,發(fā)現(xiàn)用怎樣的長(zhǎng)方形可以正好鋪滿一個(gè)正方形;用邊長(zhǎng)幾厘米的正方形可以正好鋪滿一個(gè)長(zhǎng)方形。在對(duì)所發(fā)現(xiàn)的不同的結(jié)果的過程中,引導(dǎo)學(xué)生聯(lián)系除法算式進(jìn)行思考,對(duì)直觀操作活動(dòng)進(jìn)行初步的抽象。再把初步發(fā)現(xiàn)的結(jié)論進(jìn)行類推,在此基礎(chǔ)上,引導(dǎo)學(xué)生思考正方形的邊長(zhǎng)與長(zhǎng)方形的長(zhǎng)和寬有什么關(guān)系,再揭示公倍數(shù)和公因數(shù),最小公倍數(shù)與最大公因數(shù)的概念,突出概念的內(nèi)涵是“既是……又是……”即“公有”。并在此基礎(chǔ)上,借助直觀的集合等圖式,顯示公倍數(shù)與公因數(shù)的意義。讓學(xué)生經(jīng)歷了概念的形成過程。

  三是刪掉了一些與學(xué)生實(shí)際聯(lián)系不夠緊密、對(duì)后繼學(xué)習(xí)沒有影響的內(nèi)容后,確實(shí)減輕了學(xué)生的負(fù)擔(dān),但是找兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)時(shí)由于采用了列舉法,學(xué)生得花較多的時(shí)間去找,當(dāng)碰到的兩個(gè)數(shù)都比較大時(shí),不僅花時(shí)多,而且還容易出現(xiàn)遺漏或算錯(cuò)的情況。相比之下,用短除法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)就不會(huì)出現(xiàn)這方面的問題,所以我在實(shí)際教學(xué)中,先根據(jù)概念采用一一列舉的方法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù),待學(xué)生熟悉之后就教學(xué)生運(yùn)用短除法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù),這樣的安排效果不錯(cuò),學(xué)生也沒感到增加了負(fù)擔(dān)。

因數(shù)和倍數(shù)教學(xué)反思3

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,具體做到了以下幾點(diǎn):

  一、尊重教材,引導(dǎo)學(xué)生實(shí)現(xiàn)從形象向抽象的飛躍。

  教材中首先引導(dǎo)學(xué)生理解數(shù)與數(shù)之間的關(guān)系,進(jìn)而用乘法算式把不同的列法表示出來,再根據(jù)乘法算式教學(xué)倍數(shù)和因數(shù)的意義。這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長(zhǎng)期的消化理解的過程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,我在本課的教學(xué)中體現(xiàn)了自主化、活動(dòng)化、合作化和情意化,

  二、細(xì)化過程,讓學(xué)生在充分交流中感悟理解倍數(shù)和因數(shù)的意義。

  倍數(shù)和因數(shù)的意義是本單元的重要知識(shí),其他內(nèi)容的教學(xué)都以此為基礎(chǔ)。在學(xué)生得出乘法算式后,首先引導(dǎo)學(xué)生觀察3×4=12這道算式,邊指著算式邊先介紹“12是3的倍數(shù)”,然后啟發(fā)學(xué)生“看著算式你還能想到什么?”很多學(xué)生已經(jīng)領(lǐng)會(huì)12也是4的倍數(shù),指名說后,再?gòu)?qiáng)化一下讓學(xué)生連起來說說誰是誰的倍數(shù)。接著教學(xué)“3是12的因數(shù)”,再啟發(fā)“這時(shí)你又能想到什么?”學(xué)生很容易聯(lián)想到“4也是12的因數(shù)”,而且學(xué)生的學(xué)習(xí)興趣濃厚、求知欲強(qiáng)。這時(shí)再讓學(xué)生完整的說一說誰是誰的倍數(shù),誰是誰的因數(shù),已經(jīng)“水到渠成”。在初步感受倍數(shù)和因數(shù)的意義是與乘法有聯(lián)系的,表達(dá)的是自然數(shù)之間的關(guān)系之后,接著練一練讓學(xué)生根據(jù)2×6=12先同桌互相說說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),在全班交流。最后根據(jù)1×12=12先指名說一說哪個(gè)數(shù)是哪個(gè)數(shù)的倍數(shù)(或因數(shù)),再讓學(xué)生輕聲地說說有點(diǎn)特別的`兩句。

  整個(gè)過程處理細(xì)致、層次清晰、有扶有放,生生交流、師生交流充分,反饋及時(shí)、兼顧學(xué)困生,讓學(xué)生在遷移中理解倍數(shù)和因數(shù)的意義。

  三、由點(diǎn)及面,巧架平臺(tái),讓學(xué)生在師生互動(dòng)中建立完整的數(shù)學(xué)模型。

  找一個(gè)數(shù)的倍數(shù)或因數(shù),既能鞏固倍數(shù)和因數(shù)的意義,也為研究倍數(shù)的特征及意義作準(zhǔn)備。探索找一個(gè)數(shù)的倍數(shù)或因數(shù)的方法時(shí),重點(diǎn)是幫助學(xué)生建立相應(yīng)的數(shù)學(xué)模型。

  探索求一個(gè)數(shù)因數(shù)的方法是本課的難點(diǎn),例題直接安排找24的因數(shù)更是困難。教學(xué)中我還是利用3×4=12做鋪墊,引導(dǎo)學(xué)生先找一找12的因數(shù),初步感知了找因數(shù)的方法。然后層層推進(jìn),先讓學(xué)生想一道算式找24的因數(shù),引出根據(jù)除法找因數(shù)的方法,再讓學(xué)生按除法通過自主探究找出24的所有因數(shù),接著組織學(xué)生比較、討論、優(yōu)化提升出找一個(gè)數(shù)的因數(shù)的方法。

  教學(xué)4的倍數(shù)時(shí),學(xué)生在4×4=16的鋪墊下,很容易找到一個(gè)或幾個(gè)4的倍數(shù),但是想要“一個(gè)不漏且有序的找全,并體會(huì)出4的倍數(shù)的個(gè)數(shù)是無限的”卻很難。如何引導(dǎo)學(xué)生建構(gòu)完整的倍數(shù)的數(shù)學(xué)模型呢?我遵循學(xué)生的認(rèn)知規(guī)律,然后引導(dǎo)學(xué)生按從小到大的順序整理,接著向兩頭延伸:有比4更小的嗎?接著4×2=8,4×3=12,4×4=16,…像這樣說下去說得完嗎?4的倍數(shù)的特點(diǎn)逐步在學(xué)生的腦海中得以完善、合理建構(gòu)。

  這樣搭建了有效的平臺(tái)、形成了師生互動(dòng)生成的過程,學(xué)生經(jīng)歷了無序、不完整逐步由點(diǎn)及面向有序、完整的思維邁進(jìn),有效的建構(gòu)了數(shù)學(xué)模型。

因數(shù)和倍數(shù)教學(xué)反思4

  《倍數(shù)和因數(shù)》這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,再在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù),而現(xiàn)在是在未認(rèn)識(shí)整除的情況下直接認(rèn)識(shí)倍數(shù)和因數(shù)的。數(shù)學(xué)中的“起始概念”一般比較難教,這部分內(nèi)容學(xué)生初次接觸,對(duì)于學(xué)生來說是比較難掌握的內(nèi)容。首先是名稱比較抽象,在現(xiàn)實(shí)生活中又不經(jīng)常接觸,對(duì)這樣的概念教學(xué),要想讓學(xué)生真正理解、掌握、判斷,需要一個(gè)長(zhǎng)期的消化理解的過程。

  這節(jié)課我在教學(xué)中充分體現(xiàn)以學(xué)生為主體,為學(xué)生的探究發(fā)現(xiàn)提供足夠的時(shí)空和適當(dāng)?shù)闹笇?dǎo),同時(shí),也為提高課堂教學(xué)的有效性,這節(jié)課帶給我的感想是頗多的,但綜觀整堂課,我覺得要改進(jìn)的地方還有很多,我只有不斷地進(jìn)行反思,才能不斷地完善思路,最終才能有所悟,有所長(zhǎng)。下面就說說我對(duì)本課在教學(xué)設(shè)計(jì)上的反思和一些初淺的想法。

  比如在認(rèn)識(shí)“因數(shù)、倍數(shù)”時(shí),不再運(yùn)用整除的概念為基礎(chǔ),引出因數(shù)和倍數(shù),而是直接從乘法算式引出因數(shù)和倍數(shù)的概念,目的是減去“整除”的數(shù)學(xué)化定義,降低學(xué)生的認(rèn)知難度,雖然課本沒出現(xiàn)“整除”一詞,但本質(zhì)上仍是以整除為基礎(chǔ)。本課的教學(xué)重點(diǎn)是求一個(gè)數(shù)的因數(shù),在學(xué)生已掌握了因數(shù)、倍數(shù)的概念及兩者之間的`關(guān)系的基礎(chǔ)上,對(duì)學(xué)生而言,怎樣求一個(gè)數(shù)的因數(shù),難度并不算大,因此教學(xué)例題“找出18的因數(shù)”時(shí),我先放手讓學(xué)生自己找,學(xué)生在獨(dú)立思考的過程中,自然而然的會(huì)結(jié)合自己對(duì)因數(shù)概念的理解,找到解決問題的方法(培養(yǎng)學(xué)生對(duì)已有知識(shí)的運(yùn)用意識(shí)),然后在交流中不難發(fā)現(xiàn)可用乘法或除法來求一個(gè)數(shù)的因數(shù)(列出積是18的乘法算式或列出被除數(shù)是18的除法算式)。在這個(gè)學(xué)習(xí)活動(dòng)環(huán)節(jié)中,我留給了學(xué)生較充分的思維活動(dòng)的空間,有了自由活動(dòng)的空間,才會(huì)有思維創(chuàng)造的火花,才能體現(xiàn)教育活動(dòng)的終極目標(biāo)。

  新課標(biāo)實(shí)施的過程是一個(gè)不斷學(xué)習(xí)、探究、研究和提高的過程,在這個(gè)過程中,需要我們認(rèn)真反思、獨(dú)立思考、交流探討,學(xué)習(xí)研究,與學(xué)生平等對(duì)話,在實(shí)踐和探索中不斷前進(jìn)。

因數(shù)和倍數(shù)教學(xué)反思5

  《公倍數(shù)和公因數(shù)》的教學(xué)已接近尾聲,但練習(xí)反饋,部分學(xué)生求兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)錯(cuò)誤百出,細(xì)細(xì)思量,用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!胰枂枌W(xué)生找兩個(gè)數(shù)公倍數(shù)和最小公倍數(shù),或者兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“煩”,“很煩”,“太麻煩了”。

  在了解了學(xué)生的感受以后,我又重新通過練習(xí)概括出了一些特殊情況:

 。1)兩個(gè)數(shù)是倍數(shù)關(guān)系的,這兩個(gè)數(shù)的最小公倍數(shù)是其中較大的一個(gè)數(shù),最大公因數(shù)是其中較小的一個(gè)數(shù);

 。2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的'情況(“互質(zhì)數(shù)”這個(gè)概念學(xué)生沒有學(xué)到):

 、賰蓚(gè)不同的素?cái)?shù);

 、趦蓚(gè)連續(xù)的自然數(shù);

  ③1和任何自然數(shù)。

  另外,我又結(jié)合教材后面的“你知道嗎?”,指導(dǎo)了一下用短除法求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)的方法。在完成練習(xí)時(shí),讓學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個(gè)數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡。

  想來想去,還是真得很懷念舊教材上的“短除法”。

因數(shù)和倍數(shù)教學(xué)反思6

  這是一節(jié)概念課,關(guān)于“倍數(shù)和因數(shù)”教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式來認(rèn)識(shí)倍數(shù)和因數(shù),從而體會(huì)倍數(shù)和因數(shù)的意義,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)以及倍數(shù)和因數(shù)的特征。

  這部分知識(shí)對(duì)于四年級(jí)學(xué)生而言,沒有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課,因此為了讓乏味變成有味,在課開始之前,跟同學(xué)們講了韓信點(diǎn)兵的故事,從一個(gè)同余問題的解決讓學(xué)生產(chǎn)生興趣,并告知學(xué)生所用知識(shí)與本節(jié)課所學(xué)知識(shí)有很大關(guān)聯(lián),引導(dǎo)學(xué)生認(rèn)真學(xué)好本節(jié)課的知識(shí)。

  在教授倍數(shù)和因數(shù)時(shí),我讓學(xué)生自己動(dòng)手操作,感受不同形狀下所得到的不同乘法算式,通過這些乘法算式認(rèn)識(shí)倍數(shù)和因數(shù),并且讓學(xué)生自己想一道乘法算式,讓同桌用倍數(shù)和因數(shù)說一說,從學(xué)生的自身素材去理解概念,使學(xué)生對(duì)新知識(shí)印象更深刻,從而使學(xué)生進(jìn)一步理解和掌握倍數(shù)和因數(shù)。但是,在這一環(huán)節(jié)中,由于緊張,忘記讓學(xué)生從“能不能直接說3是因數(shù),12是倍數(shù)”這一反例中體會(huì)倍數(shù)和因數(shù)是一種相互依存的關(guān)系,以致到后面做判斷時(shí)出現(xiàn)很多同學(xué)認(rèn)為“6是因數(shù),24是倍數(shù)”這種說法是正確的。

  本節(jié)課的難點(diǎn)是找一個(gè)數(shù)的因數(shù),因此,我將教材中先教找一個(gè)數(shù)的倍數(shù)改成先教找一個(gè)數(shù)的.因數(shù),也正因?yàn)檎乙粋(gè)數(shù)的因數(shù)比較有難度,所以,我先讓學(xué)生根據(jù)之前例題中的三個(gè)乘法算式來說一說12的因數(shù),從而讓學(xué)生感受到找一個(gè)數(shù)的因數(shù)可以利用乘法算式來找,并且初步讓學(xué)生感受有序的思想,給學(xué)生一個(gè)方法的認(rèn)知。為了讓學(xué)生得到反思,在找的過程中,請(qǐng)學(xué)生互評(píng),在交流中產(chǎn)生思維的碰撞;請(qǐng)學(xué)生自己糾正,在錯(cuò)誤中產(chǎn)生反思意識(shí),從而能夠提升學(xué)生自主解決問題的能力。

  可是,作為一名新教師,對(duì)于課堂中的生成,沒有足夠的經(jīng)驗(yàn)和課堂機(jī)智將其很好的轉(zhuǎn)化成學(xué)生所需達(dá)到的目標(biāo),以致跟預(yù)設(shè)的效果不一致,學(xué)生沒有很充分地得到反思。并且對(duì)于課堂中的一些細(xì)節(jié)問題,處理得還不夠到位。本節(jié)課的教學(xué)對(duì)于我來說是一個(gè)機(jī)會(huì),也是一個(gè)契機(jī),今后,我會(huì)不斷完善教學(xué),總結(jié)經(jīng)驗(yàn)教訓(xùn),在各個(gè)方面嚴(yán)格要求自己,爭(zhēng)取在今后的工作中做的更好!

因數(shù)和倍數(shù)教學(xué)反思7

  因區(qū)領(lǐng)導(dǎo)要來調(diào)研,我們四年級(jí)幾位數(shù)學(xué)老師經(jīng)商量決定,都上《倍數(shù)和因數(shù)》,都覺得這個(gè)內(nèi)容挺簡(jiǎn)單的。今天上午第一節(jié)課,領(lǐng)導(dǎo)進(jìn)了我的教室聽了我上這一課。上完這課,之前的那個(gè)想法就煙消云散了,根本沒有想象的那么容易上。下面對(duì)自己的課堂做一些反思。

  新授的第一個(gè)教學(xué)環(huán)節(jié)是認(rèn)識(shí)倍數(shù)和因數(shù)的意義,原本我想讓每位學(xué)生準(zhǔn)備12個(gè)同樣大小的小正方形擺長(zhǎng)方形的,再一想,都四年級(jí)的學(xué)生了,不需要操作了,而且,操作這一過程可以節(jié)省不少時(shí)間,本來這節(jié)課就時(shí)間很緊。沒想到,學(xué)生在心中拼一個(gè)長(zhǎng)方形后,說乘法算式時(shí)疙里疙瘩的,語(yǔ)言表述不流暢,看來是學(xué)生缺乏操作體驗(yàn)的緣故吧。至于,認(rèn)識(shí)因數(shù)和倍數(shù)的意義,并熟練地說,這些學(xué)生都掌握很好,只是,不知怎么搞的`,我竟然把“能說5是因數(shù),12是因數(shù),60是倍數(shù)嗎?”這個(gè)問題給忘記了,這樣,無形中淡化了需強(qiáng)調(diào)的“倍數(shù)和因數(shù)之間的關(guān)系”,不出我所料,在下午的反饋中,專家真指出了這一點(diǎn)。

  第二環(huán)節(jié)是探求找一個(gè)數(shù)的因數(shù)的方法,找一個(gè)數(shù)的因數(shù)的方法是本節(jié)課的重點(diǎn),也是難點(diǎn)。根據(jù)教材編排的話,應(yīng)該先找倍數(shù)的。我考慮到突出重點(diǎn)、突破難點(diǎn),我就做了調(diào)整,再說,之前,我查閱了好多資料,也有不少老師認(rèn)為先因數(shù)比較合理,因此,我的決定就更加堅(jiān)定了。在認(rèn)識(shí)了因數(shù)和倍數(shù)的意義的基礎(chǔ)上,我放手讓學(xué)生自己找36的因數(shù),然后讓學(xué)生發(fā)言交流找的方法,學(xué)生真的很努力很拎的清,見有領(lǐng)導(dǎo)聽課,竟然發(fā)揮出色,表現(xiàn)的相當(dāng)?shù)恼鎸?shí),也相當(dāng)?shù)某錾,大膽地說出自己的所思所想,學(xué)生的回答給人的感覺是那么自然,那么真實(shí),沒有一點(diǎn)矯揉造作。在下午的反饋中,專家夸我的課真實(shí)、樸實(shí)、實(shí)在,我想這應(yīng)歸功于我的學(xué)生們,是他們的樸實(shí)、實(shí)在感染了我。然而,我在這個(gè)環(huán)節(jié)設(shè)計(jì)的問題有點(diǎn)籠統(tǒng),不到位,導(dǎo)致有幾處的問話重復(fù),最終導(dǎo)致本課時(shí)間不夠,這是我本節(jié)課最大的遺憾。第三環(huán)節(jié)是探求找一個(gè)數(shù)的倍數(shù)的方法,這里,我又一次偷懶,我完全放手讓學(xué)生來完成,結(jié)果學(xué)生們真的無師自通,很快就找到了方法,并有了很多發(fā)現(xiàn),相當(dāng)有價(jià)值,學(xué)生學(xué)習(xí)的主動(dòng)性在這堂課中得到了很好的體現(xiàn)。

  由此,讓我明白,學(xué)生真的不可以小看,他們真的很厲害。但有一點(diǎn),歸功于我,他們的大膽是我在近一年的時(shí)間中不斷訓(xùn)練的成果。

因數(shù)和倍數(shù)教學(xué)反思8

  《倍數(shù)和因數(shù)》是我們工作室四月份研究的一個(gè)課例,我們是先抽簽上二十分鐘的課堂教學(xué),再進(jìn)行研討,我們研究了每一部分的處理方法,同時(shí),為了讓我們的課堂更加連貫、自然,我們也研究了例題之間的過渡環(huán)節(jié),嘗試找到更加恰當(dāng)?shù)奶幚矸椒āD谴窝芯恐笪覀児ぷ魇业拿恳晃怀蓡T都根據(jù)自己的想法修改了教案。前幾天我們工作室又在活動(dòng)中上了這節(jié)課,這次上課的是我,由于事先準(zhǔn)備的不夠充分課堂中發(fā)現(xiàn)了很多的問題,有上次研討過還需要改進(jìn)的問題,也有這次上課出現(xiàn)的新問題。課后工作室的成員給了我很多的很好的建議,我根據(jù)好的建議修改了我的教學(xué)設(shè)計(jì),下面我來具體的說一說。

  1、情境導(dǎo)入。本節(jié)課的內(nèi)容是《倍數(shù)和因數(shù)》為了讓學(xué)生更清楚地感受倍數(shù)和因數(shù)的依存關(guān)系,我課上用了大頭兒子和小頭爸爸的例子,也用了我是老師,他們是學(xué)生的例子。但這兩個(gè)例子對(duì)于本課的教學(xué)或許沒有太多的意義,好像不能讓學(xué)生明確感受出倍數(shù)的因數(shù)的依存關(guān)系,所以我們可以把這一部分的內(nèi)容去掉,直接進(jìn)入課堂,讓學(xué)生進(jìn)行操作活動(dòng)。

  2、倍數(shù)和因數(shù)的意義。本課是想通過用12個(gè)完全相同的正方形拼成長(zhǎng)方形的活動(dòng)來讓學(xué)生在活動(dòng)中初步感知倍數(shù)和因數(shù)的關(guān)系,再用具體的例子向?qū)W生說明倍數(shù)和因數(shù)的含義。在課堂中我直接讓學(xué)生進(jìn)行操作,兩人小組活動(dòng),試著擺一擺,看看有沒有不同的擺法,在交流的時(shí)候讓學(xué)生說說自己的擺法,每排擺了幾個(gè),擺了幾排,怎樣用乘法算式表示,再讓學(xué)生有序地說一說,為后面找一個(gè)數(shù)的因數(shù)做好鋪墊。再有一道具體的算式舉例說明倍數(shù)和因數(shù)的含義,用我們過去學(xué)習(xí)的乘法算式中的乘數(shù)乘乘數(shù)等于積過渡到倍數(shù)和因數(shù),再讓學(xué)生說一說其他兩道乘法算式。說完后再給學(xué)生一個(gè)提醒,并讓學(xué)生再根據(jù)出示的算式說一說誰是誰的倍數(shù)和誰是誰的因數(shù),最后的時(shí)候讓學(xué)生自己寫一個(gè)算式,并說一說。

  3、找一個(gè)數(shù)的倍數(shù)。這應(yīng)該時(shí)本節(jié)課的.重難點(diǎn)內(nèi)容,在教學(xué)中一定要讓學(xué)生說一說找倍數(shù)的方法,而我在上課的時(shí)候把這一個(gè)重要的部分一帶而過,可以看出來很大一部分學(xué)生是沒有掌握找倍數(shù)的方法的。所以我在思考這一難點(diǎn)該如何突破?是不是應(yīng)讓學(xué)生先獨(dú)立想一想辦法,多說一說,給學(xué)生足夠多的時(shí)間讓學(xué)生去說自己用來找倍數(shù)的方法,這樣多種方法出來以后,我們可以對(duì)方法進(jìn)行優(yōu)化,選擇快速簡(jiǎn)單的找法。在教學(xué)的時(shí)候,同時(shí)注培養(yǎng)學(xué)生有序?qū)懗霰稊?shù),注意倍數(shù)書寫的格式等意識(shí),可以比較有序的找和無序的找,讓學(xué)生自己感受有序的好處,學(xué)生有了有序地找的基本方法后,在進(jìn)行練習(xí)的時(shí)候也會(huì)選擇剛才優(yōu)化過的好的方法進(jìn)行練習(xí)。

  4、找倍數(shù)的特征。在完成找一個(gè)數(shù)的倍數(shù)之后,我們可以直接出示3,2,5的倍數(shù)是哪些,讓學(xué)生觀察三個(gè)倍數(shù),再說一說自己的發(fā)現(xiàn),放手讓學(xué)生去找或許學(xué)生能夠很快的找出來,但如果給好具體的問題,可能會(huì)限制一些學(xué)生的思考。如果學(xué)生在觀察時(shí)沒有發(fā)現(xiàn)我們所想要總結(jié)的特征,可以對(duì)學(xué)生進(jìn)行適當(dāng)?shù)奶崾,讓學(xué)生觀察一個(gè)數(shù)最小的倍數(shù),最大的倍數(shù)和倍數(shù)的個(gè)數(shù)等。先給學(xué)生足夠的時(shí)間讓學(xué)生自己去找,我們要相信他們藕能力做到。

  5、課堂常規(guī)的問題。在上課之前我應(yīng)先確定好小組的具體分配,以免學(xué)生在小組活動(dòng)中找不到合作的對(duì)象,如果上課之前具體的分好了,小組討論的效率會(huì)高很多。在上課時(shí),我要少說,把更多說的機(jī)會(huì)留給學(xué)生,讓學(xué)生去表達(dá)自己的想法,同時(shí)還要相信學(xué)生,不要怕學(xué)生不會(huì),而給出很多的條條框框,限制了學(xué)生的思維發(fā)展。

因數(shù)和倍數(shù)教學(xué)反思9

  XXXX小學(xué) XXXXX

  教學(xué)內(nèi)容:教材例1、例2

  教學(xué)目標(biāo)

  1.知識(shí)與技能:讓學(xué)生初步理解因數(shù)和倍數(shù)的概念,掌握找因數(shù)和倍數(shù)的方法。學(xué)會(huì)用列舉法找一個(gè)數(shù)的因數(shù)和倍數(shù)。

  2.過程與方法:借助直觀圖,先引導(dǎo)學(xué)生觀察后列出乘法算式,最后結(jié)合乘法算式來理解因數(shù)與倍數(shù)的概念。

  3.情感、態(tài)度與價(jià)值觀:理解因數(shù)和倍數(shù)的意義能及兩者之間相互依存的關(guān)系。

  教學(xué)重點(diǎn):理解因數(shù)和倍數(shù)的概念。

  教學(xué)難點(diǎn):掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。

  教學(xué)方法:?jiǎn)l(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。

  教學(xué)準(zhǔn)備:多媒體。

  教學(xué)過程:

  一、新課導(dǎo)入:

  1.出示教材第5頁(yè)例1。

  12÷2=6 9÷5=1.830÷6=5 2÷3=0.6

  26÷8=3.5 19÷7≈2.7120÷10=2 21÷21=163÷9=7

  (1)觀察: 引導(dǎo)觀察例1中的算式,你發(fā)現(xiàn)了什么?(都是除法算式)

  (2)分類:你能把上面的除法算式分類嗎?

  學(xué)生分類后,教師組織學(xué)生交流,引導(dǎo)學(xué)生根據(jù)是否整除分為以下兩類

  第一類 12÷2=620÷10=2 30÷6=5 21÷21=1 63÷9=7 第二類 9÷5=1.8 19÷7≈2.71 2÷3=0.626÷8=3.25

  2.引入課題。這節(jié)課我們就來學(xué)習(xí)有關(guān)數(shù)的整除的相關(guān)知識(shí)。(板書課題:因數(shù)和倍數(shù))

  二、探索新知:

 。ㄒ唬⒚鞔_因數(shù)與倍數(shù)的意義。(教學(xué)例1)

  1. 教師引導(dǎo)。教師指出:在整數(shù)除法中,如果商是整數(shù)而沒有余數(shù),我們

  就說被除數(shù)是除數(shù)和商的倍數(shù),除數(shù)和商是被除數(shù)的因數(shù)。例如:12÷2=6,我們說12是2和6的倍數(shù),2和6是12的因數(shù)。

  2. 學(xué)生嘗試。

  教師讓學(xué)生說一說第一類的每個(gè)算式中,誰是誰的因數(shù)?誰是誰的倍數(shù)?先同桌互相說一說,再組織全班交流。

  3. 深化認(rèn)識(shí)。師:通過剛才的說一說活動(dòng),你發(fā)現(xiàn)了什么?

  引導(dǎo)學(xué)生體會(huì):因數(shù)和倍數(shù)雖是兩個(gè)不同的概念,但又是相互依存的,二者不能單獨(dú)存在。我們不能說誰是因數(shù),誰是倍數(shù),而應(yīng)該說誰是誰的因數(shù),誰是誰的倍數(shù)。例如,30÷6=5,30是6和5的倍數(shù),6和5是30的因數(shù)。教師強(qiáng)調(diào),并讓學(xué)生注意:為了方便,在研究因數(shù)和倍數(shù)的時(shí)候,我們所說的數(shù)指的是自然數(shù)(一般不包括O)。

  4. 即時(shí)練習(xí)。指導(dǎo)學(xué)生完成教材第5頁(yè)“做一做”。

  小結(jié):如果a÷b =c(a,b,c均是不為0的自然數(shù)),那么a就是b和c的倍數(shù),b和c是a的因數(shù)。因數(shù)和倍數(shù)是相互依存的。

  (二)、探索找一個(gè)數(shù)因數(shù)的方法。(教學(xué)例2)

  1. 出示例2:18的因數(shù)有哪幾個(gè)?

  (1) 學(xué)生獨(dú)立思考。

  師:根據(jù)因數(shù)和倍數(shù)的意義,想一想18除以哪些整數(shù)的結(jié)果是整數(shù)。

  18÷1=18,l和18是18的因數(shù);18÷2=9, 2和9是18的因數(shù);18÷3=6, 3和6是18的因數(shù)。引導(dǎo)學(xué)生把18的因數(shù)按從小到大的順序排列,每?jī)蓚(gè)因數(shù)之間用逗號(hào)隔開,全部寫完后用句號(hào)結(jié)束,即18的因數(shù)有:1,2,3,6,9 ,18。

  (2)小組合作交流。交流時(shí)教師要讓學(xué)生說明找的方法,引導(dǎo)學(xué)生認(rèn)識(shí):只要想18除以哪些整數(shù)的結(jié)果是整數(shù),并且要從1開始,一對(duì)一對(duì)地找,避免遺漏。如果學(xué)生還有其他想法,只要合理,教師都應(yīng)給予肯定。

  (3)采用集合圖的方法。

  教師指出也可用右面的集合圖來表示18的全部因數(shù)。明確:用圖示法表示18的因數(shù)時(shí),先畫一個(gè)橢圓,在橢圓的上面寫上“18的因數(shù)”,再把18的因數(shù)按從小到大的順序有規(guī)律地寫在橢圓里,每?jī)蓚(gè)因數(shù)之間也用逗號(hào)隔開,全部寫完后不加句號(hào)。

  (4)練習(xí)。讓學(xué)生找出30的因數(shù)和36的因數(shù),并組織交流。

  30的因數(shù)有1,2,3,5,6,10,15,30。

  36的因數(shù)有1,2,3,4,6,9,12,18,36。

  三、鞏固練習(xí)

  指導(dǎo)學(xué)生完成教材“練習(xí)二”第1、6題。學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。

  四、課堂小結(jié)

  師:通過本節(jié)課的學(xué)習(xí),你有什么收獲?

  板書設(shè)計(jì):

  因數(shù)和倍數(shù)

  12÷2=6 12是2和6的倍數(shù)

  2和6是12的因數(shù) 18的因數(shù)有1,2,3,6,9,18。

  一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的'個(gè)數(shù)是無限的。

  作業(yè):教材第7頁(yè)“練習(xí)二”第2(1)題。

  第二單元:因數(shù)和倍數(shù)

  第二課時(shí):因數(shù)與倍數(shù)(2)

  教學(xué)內(nèi)容:教材P6例3及練習(xí)二第2(1)、3~8題。

  教學(xué)目標(biāo):

  知識(shí)與技能:通過學(xué)習(xí),使學(xué)生能自主探究,找出求一個(gè)數(shù)的倍數(shù)的方法。 過程與方法:結(jié)合具體情境,使學(xué)生進(jìn)一步認(rèn)識(shí)自然數(shù)之間存在因數(shù)和倍數(shù)的關(guān)系,掌握求一個(gè)數(shù)的因數(shù)和倍數(shù)的方法。

  情感、態(tài)度與價(jià)值觀:初步學(xué)會(huì)從數(shù)學(xué)的角度提出問題、理解問題,并能用所學(xué)知識(shí)解決問題。在解決問題的過程中,培養(yǎng)學(xué)生概括、分析和比較的能力,使學(xué)生體會(huì)數(shù)學(xué)知識(shí)的內(nèi)在聯(lián)系。

  教學(xué)重點(diǎn):掌握求一個(gè)數(shù)的倍數(shù)的方法。

  教學(xué)難點(diǎn):理解因數(shù)和倍數(shù)兩者之間的關(guān)系。

  教學(xué)方法:?jiǎn)l(fā)式教學(xué)法、指導(dǎo)自主學(xué)習(xí)法。

  教學(xué)準(zhǔn)備:多媒體。

  教學(xué)過程:

  一、復(fù)習(xí)導(dǎo)入

  10,28,42的因數(shù)有哪些?你是用什么方法找出這些數(shù)的因數(shù)個(gè)數(shù)的?一個(gè)數(shù)的因數(shù)中,最大的是幾?最小的是幾?

  二、探索新

  1.探索找倍數(shù)的方法。(教學(xué)例3)

  出示例3:2的倍數(shù)有哪些?

  師:你會(huì)找2的倍數(shù)嗎?給你們1分鐘的時(shí)間,看誰寫得又對(duì)、又快、又多!準(zhǔn)備好了嗎?開始!

  師:時(shí)間到,你寫了多少個(gè)2的倍數(shù)?生1:15個(gè)。生2:24個(gè)。

  師:大家都是用的什么方法呢?

  生1:我是用乘法口訣,一二得二,二二得四……這樣寫下去的。

  生2:我也是用乘法,用2去乘1、乘2……

  師:哪些同學(xué)也是用乘法做的?

  師:你們都是用2去乘一個(gè)數(shù),所得的積就是2的倍數(shù)。還有不同的方法嗎?

  生3:我用的是除法,用2÷2=1,4÷2=2 6÷2=3??依次除下去。

  師:很好!如果給你更長(zhǎng)的時(shí)間,你能把2的倍數(shù)全部寫出來嗎?

  師:為什么?(因?yàn)?的倍數(shù)有無數(shù)個(gè))

  師:怎么辦?(用省略號(hào))

  師:通過交流,你有什么發(fā)現(xiàn)?

  引導(dǎo)學(xué)生初步體會(huì)2的倍數(shù)的個(gè)數(shù)是無限的。

  追問:你能用集合圖表示2的倍數(shù)嗎?

  學(xué)生填完后,教師組織學(xué)生進(jìn)行核對(duì)。

  (4)即時(shí)練習(xí)。讓學(xué)生找出3的倍數(shù)和5的倍數(shù),并組織交流。學(xué)生舉例時(shí)可能會(huì)產(chǎn)生錯(cuò)誤,教師要引導(dǎo)學(xué)生根據(jù)錯(cuò)例進(jìn)行適時(shí)剖析。

  4.反思提煉。師:從前面找因數(shù)和倍數(shù)的過程中,你有什么發(fā)現(xiàn)?

  先讓學(xué)生在小組內(nèi)交流,再組織全班集體交流,通過全班交流,引導(dǎo)學(xué)生認(rèn)識(shí)以下三點(diǎn):

  (1)一個(gè)數(shù)的最小因數(shù)是1,最大因數(shù)是它本身。

  (2)一個(gè)數(shù)的最小倍數(shù)是它本身,沒有最大倍數(shù)。

  (3)一個(gè)數(shù)的因數(shù)的個(gè)數(shù)是有限的,一個(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的。

  三、鞏固提升

  1.指導(dǎo)學(xué)生完成教材第7~8頁(yè)“練習(xí)二”第4、5、6、7題。

  學(xué)生獨(dú)立完成全部練習(xí)后教師組織學(xué)生進(jìn)行集體證正。

  集體訂正時(shí),教師著重引導(dǎo)學(xué)生認(rèn)識(shí)以下幾點(diǎn):

  (1)第4題“15的因數(shù)有哪些?”和“15是哪些數(shù)的倍數(shù)”答案是一樣的。

  (2)第5題中的第(2)小題是錯(cuò)的,因?yàn)橐粋(gè)數(shù)的倍數(shù)的個(gè)數(shù)是無限的,第(4)小題也是錯(cuò)的,因?yàn)樵谘芯恳驍?shù)和倍數(shù)時(shí),我們所說的數(shù)指的是自然數(shù),不含小數(shù)。

  (3)思考題:兩數(shù)如果都是7(或9)倍數(shù),它們的和也一定是7(或9)的倍數(shù),即如果兩數(shù)都是n的倍數(shù),它的和也是n的倍數(shù)。

  2.利用求倍數(shù)的方法解決生活中的實(shí)際問題

  出示:媽媽買來幾個(gè)西瓜,2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,5個(gè)5個(gè)地?cái)?shù),也正好數(shù)完。這些西瓜最少有多少個(gè)?

  理解題意,分析解答。

  教師提示“2個(gè)2個(gè)地?cái)?shù),正好數(shù)完,說明西瓜的個(gè)數(shù)是2的倍數(shù),5個(gè)5

因數(shù)和倍數(shù)教學(xué)反思10

  本單元注意以下幾個(gè)方面的教學(xué),可以促進(jìn)學(xué)生鞏固基礎(chǔ)知識(shí),促進(jìn)學(xué)生發(fā)展基本思維能力。

  1.加強(qiáng)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。

  本冊(cè)新教材采用整數(shù)除法的表示形式教學(xué),便于學(xué)生感知因數(shù)和倍數(shù)的本質(zhì)意義。注意因數(shù)與倍數(shù)的相互依存的關(guān)系;質(zhì)數(shù)、合數(shù)與因數(shù)的關(guān)系;偶數(shù)、奇數(shù)與2的倍數(shù)的關(guān)系等,形成概念鏈,依靠理解促進(jìn)記憶!

  2.注意培養(yǎng)學(xué)生的抽象概括與歸納推理能力

  關(guān)注由從具體到抽象、由特殊到一般的概括、歸納過程,即從個(gè)別性知識(shí)推出一般性結(jié)論。如質(zhì)數(shù)、合數(shù):寫出1——20各數(shù)的因數(shù)進(jìn)行歸納推理,熟悉20以內(nèi)的質(zhì)數(shù),制作100以內(nèi)質(zhì)數(shù)表。

  3.教給學(xué)生養(yǎng)成“有序?qū)W習(xí)”的良好學(xué)習(xí)習(xí)慣。

  4.加強(qiáng)解決問題的教與學(xué),新教材增加了探索兩數(shù)之和的奇偶性的純數(shù)學(xué)問題,可以根據(jù)兩數(shù)之和的奇偶性的'規(guī)律推理出兩數(shù)之差、兩數(shù)之積的奇偶性,并滲透解決問題的策略。

  5.拓展學(xué)生的知識(shí)面。如探究既是2的倍數(shù)又是5的倍數(shù)特征;4的倍數(shù)特征;6的倍數(shù)特征等,開拓視野,發(fā)展思維!

因數(shù)和倍數(shù)教學(xué)反思11

  本節(jié)課是第二單元的第一課時(shí),第二單元的教學(xué)內(nèi)容較為抽象,很難結(jié)合生活實(shí)例或具體情境來進(jìn)行教學(xué),學(xué)生理解起來有一定的難度。加強(qiáng)對(duì)概念間相互關(guān)系的梳理,引導(dǎo)學(xué)生從本質(zhì)上理解概念,避免死記硬背。還有要引導(dǎo)學(xué)生用聯(lián)系的觀點(diǎn)去掌握這些知識(shí),而不是機(jī)械地記憶一堆支離破碎、毫無關(guān)聯(lián)的概念和結(jié)論。

  今天這節(jié)課的教學(xué)的倍數(shù)和因數(shù)是講述兩個(gè)數(shù)之間的一種相互依存關(guān)系,于是我利用課前談話讓學(xué)生在找找生活中的相互依存關(guān)系,課中遷移到數(shù)學(xué)中的倍數(shù)和因數(shù),這樣設(shè)計(jì)自然又貼切,既讓學(xué)生感受到了數(shù)學(xué)與生活的聯(lián)系,初步學(xué)會(huì)從數(shù)學(xué)的角度去觀察事物、思考問題,激發(fā)對(duì)數(shù)學(xué)的興趣,又幫助學(xué)生理解了倍數(shù)因數(shù)之間的相互依存關(guān)系。然后我讓學(xué)生根據(jù)情境列出乘法算式,初步感知倍數(shù)關(guān)系的存在,從而引出倍數(shù)和因數(shù)的概念,并為下面學(xué)習(xí)如何找一個(gè)數(shù)的倍數(shù)奠定了良好的`基礎(chǔ)。同時(shí),我還出示了一個(gè)除法的算式,讓學(xué)生來找找倍數(shù)和因數(shù)的關(guān)系,這樣不僅溝通了乘法和除法的關(guān)系,也讓學(xué)生很容易感悟到不管是根據(jù)乘法還是除法算式都可以找到因數(shù)和倍數(shù)。

  找出一個(gè)數(shù)的因數(shù)要做到不重復(fù)和不遺漏,有些學(xué)生還不能找全,沒有掌握方法,我在今后的教學(xué)中還要注意對(duì)學(xué)困生的輔導(dǎo)。

因數(shù)和倍數(shù)教學(xué)反思12

  去年教學(xué)《公倍數(shù)和公因數(shù)》這一單元時(shí),依照學(xué)生預(yù)習(xí)、閱讀課本進(jìn)行教學(xué),老師沒有作過多的講解,從學(xué)生的練習(xí)反饋中,部分學(xué)生求兩個(gè)數(shù)的最大公因數(shù)和最小公倍數(shù)錯(cuò)誤百出,反思教學(xué)后,覺得用課本上列舉的方法,真的很難一下子準(zhǔn)確找到最大公因數(shù)或最小公倍數(shù)。如:8和10的最小公倍數(shù),有學(xué)生寫80,25和50的最大公因數(shù)有學(xué)生寫5!{(diào)查詢問學(xué)生找兩個(gè)數(shù)公倍數(shù)和最小公倍數(shù),或者兩個(gè)數(shù)的公因數(shù)和最大公因數(shù)的感受,他們都說“太麻煩了”。

  今年教學(xué)《公倍數(shù)和公因數(shù)》這一單元時(shí),我在去年教學(xué)《公倍數(shù)和公因數(shù)》的基礎(chǔ)上作了一些改進(jìn):

  一、仍然是將預(yù)習(xí)前置。

  二、動(dòng)手操作,想象延伸。

  讓學(xué)生動(dòng)手操作,提高感知效果,幫助學(xué)生形成豐富的表象,是促進(jìn)形象思維發(fā)展的有利途徑。例題教學(xué)中讓學(xué)生動(dòng)手鋪,鋪后想,想后算,算后思。

  用長(zhǎng)3厘米、寬2厘米的長(zhǎng)方形紙片分別鋪邊長(zhǎng)6厘米、8厘米的`正方形,能鋪滿哪個(gè)正方形?拿出手中的圖形,動(dòng)手拼一拼。

  學(xué)生分組操作,用除法算式把不同的擺法寫出來。

  提問:通過剛才的活動(dòng),你們發(fā)現(xiàn)了什么?

  以直觀的操作活動(dòng),在具體的問題情境中體會(huì)公倍數(shù)和公因數(shù)與生活的聯(lián)系,讓學(xué)生經(jīng)歷公倍數(shù)和公因數(shù)概念的形成過程,加深對(duì)抽象概念的理解。

  思考:根據(jù)剛才鋪正方形的過程,在頭腦里想一想,用3厘米、寬2厘米的長(zhǎng)方形紙片正好鋪滿邊長(zhǎng)多少厘米的正方形?在小組里交流。

  三、在教學(xué)中嚴(yán)格要求學(xué)生先用“列舉法”教學(xué)“求兩數(shù)公倍數(shù)與公因數(shù)”;在學(xué)生相對(duì)較熟練的時(shí)候嘗試讓學(xué)生直接說出公倍數(shù)與公因數(shù);在此基礎(chǔ)上適當(dāng)介紹后面的閱讀知識(shí),但不要求學(xué)生使用。

  四、在教學(xué)了用“列舉法”“求兩數(shù)公倍數(shù)與公因數(shù)”的知識(shí)之后,適當(dāng)提高訓(xùn)練難度,將求“最小公倍數(shù)”與“最大公因數(shù)”合并訓(xùn)練。通過聯(lián)系“最大公因數(shù)”、“最小公倍數(shù)”的知識(shí),引導(dǎo)學(xué)生發(fā)現(xiàn)求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)的擴(kuò)倍法等其它的方法。要求學(xué)生根據(jù)情況,用自己喜歡的方法來求兩個(gè)數(shù)的最小公倍數(shù)和最大公因數(shù)。這樣,給學(xué)生結(jié)合題目中兩個(gè)數(shù)的特點(diǎn),自主選擇方法的空間,學(xué)生比較喜歡,掌握較好。通過練習(xí)引導(dǎo)學(xué)生感悟、概括出了一些特殊情況:(1)兩個(gè)數(shù)是倍數(shù)關(guān)系的,這兩個(gè)數(shù)的最小公倍數(shù)是其中較大的一個(gè)數(shù),最大公因數(shù)是其中較小的一個(gè)數(shù);(2)三種最大公因數(shù)是1,最小公倍數(shù)是兩數(shù)乘積的情況(“互質(zhì)數(shù)”這個(gè)概念學(xué)生沒有學(xué)到):①兩個(gè)不同的素?cái)?shù);②兩個(gè)連續(xù)的自然數(shù);③1和任何自然數(shù)。

  課后反思:

  一、預(yù)習(xí)后的課堂教學(xué),還要教,直接放手要出問題。

  二、介紹一下短除法是有必要的。但不能直接按傳統(tǒng)的教學(xué)思路以短除法求最大公因數(shù)和最小公倍數(shù)簡(jiǎn)單代替列舉法。

  三、應(yīng)逐步鼓勵(lì)學(xué)生把求最大公因數(shù)和最小公倍數(shù)過程想在腦中,直接說出結(jié)果。引導(dǎo)感興趣的同學(xué)在課后探索其它的求最大公因數(shù)和最小公倍數(shù)的內(nèi)容,適當(dāng)提高學(xué)生的思維水平。

因數(shù)和倍數(shù)教學(xué)反思13

  1倍數(shù)和因數(shù)這一內(nèi)容與原來教材比有了很大的不同,老教材中是先建立整除的概念,在此基礎(chǔ)上認(rèn)識(shí)因數(shù)倍數(shù)。而這里的處理的方法有所不同,在這之前學(xué)生還沒有學(xué)習(xí)小數(shù)乘除法,只接觸過整數(shù)乘除法,因此教材通過用12個(gè)小正方形拼長(zhǎng)方形并寫乘法算式來引入因數(shù)和倍數(shù)。

  2要求學(xué)生用乘法算式表示自己的長(zhǎng)方形的'不同擺法,幫助學(xué)生建立起乘法意義的表象,為后面利用乘法找因數(shù)和倍數(shù)埋下伏筆。

  3重視說的訓(xùn)練,要求具體明確。“誰是誰的倍數(shù),誰是誰的因數(shù)”當(dāng)學(xué)生說到12*1=12時(shí),感到有些拗口,教師即時(shí)鼓勵(lì),體現(xiàn)了數(shù)學(xué)的人文精神和不放過任何細(xì)節(jié)的作風(fēng)。

  4如何做到既不重復(fù)又不遺漏地找36的因數(shù),對(duì)于剛剛對(duì)倍數(shù)因數(shù)有個(gè)感性認(rèn)識(shí)的學(xué)生來說有一定困難,這里可以充分發(fā)揮小組學(xué)習(xí)的優(yōu)勢(shì)。先讓學(xué)生自己獨(dú)立找36的因數(shù),我巡視了一下五分之一的學(xué)生能有序的思考,多數(shù)學(xué)生寫的算式不按一定的次序進(jìn)行。接著讓學(xué)生在小組里討論兩個(gè)問題:用什么方法找36的因數(shù),如何找不重復(fù)也不遺漏。在小組交流的過程中,學(xué)生對(duì)自己剛才的方法進(jìn)行反思,吸收同伴中好的方法,這不老師給予有有效得多。

  5練習(xí)形式活潑多樣,即顛覆傳統(tǒng)又扎實(shí)訓(xùn)練。

因數(shù)和倍數(shù)教學(xué)反思14

  教學(xué)目標(biāo):

  1、 使學(xué)生結(jié)合整數(shù)乘、除法運(yùn)算初步認(rèn)識(shí)倍數(shù)和因數(shù)的含義,探索求一個(gè)數(shù)的倍數(shù)和因數(shù)的方法,能在1~100的自然數(shù)中找出10以內(nèi)某個(gè)數(shù)的所有倍數(shù),能找出100以內(nèi)某個(gè)數(shù)的所有因數(shù)。

  2、 使學(xué)生在認(rèn)識(shí)倍數(shù)和因數(shù)以及探索一個(gè)數(shù)的倍數(shù)或因數(shù)的過程中,進(jìn)一步體會(huì)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,提高數(shù)學(xué)思考的水平。

  教學(xué)過程:

  一、談話導(dǎo)入。

  智力題:有三個(gè)人,他們中有2個(gè)爸爸,2個(gè)兒子,這是怎么回事?

  教師說明:人和人之間是有聯(lián)系的,數(shù)和數(shù)之間也是有聯(lián)系的。(板書:數(shù)和數(shù))

  二、初步認(rèn)識(shí)倍數(shù)和因數(shù)。

  1、創(chuàng)設(shè)情境。

  用12個(gè)同樣大的正方形拼成一個(gè)長(zhǎng)方形,可以怎么拼?請(qǐng)同學(xué)們先想象一下,然后說出你的擺法,并用乘法算式表示出來。

  學(xué)生匯報(bào)拼法,教師依次展示長(zhǎng)方形的拼圖,并板書:

  43=12 62=12 121=12

  教師根據(jù)43=12 揭示:43=12 12是4的倍數(shù),12也是3的倍數(shù),4和3都是12的因數(shù)。

  揭示課題:倍 因

  提出要求:你能用倍數(shù)和因數(shù)說一說 62=12 121=12嗎?

  指名學(xué)生回答,其他學(xué)生補(bǔ)充。

  2、深化感知。

 。1) 完成想想做做第1題。同桌互說以后再指名學(xué)生敘說。

 。2) 你能舉出一些算式,說說誰是誰的倍數(shù),誰是誰的因數(shù)嗎?

  教師說明:為了方便,我們?cè)谘芯勘稊?shù)和因數(shù)時(shí),所說的數(shù)一般指不是0的自然數(shù)。

  三、探求一個(gè)數(shù)的倍數(shù)。

  1、設(shè)疑。

  在剛才的學(xué)習(xí)中,我們知道了3的倍數(shù)有12,3的倍數(shù)除了12還有別的嗎?請(qǐng)?jiān)诩埳蠈懗?的倍數(shù)。你能完成得又對(duì)又好嗎?。學(xué)生在書寫過程中引發(fā)沖突:為什么停下來不寫了?有什么困難嗎?引導(dǎo)學(xué)生討論后達(dá)成共識(shí):加省略號(hào)表示寫不完。

  2、交流。

  投影展示學(xué)生作業(yè)。

  討論對(duì)不對(duì)?。

  討論好不好?。

  揭示有序,為什么要有序地寫倍數(shù)呢?

  全班討論:你是怎么寫3的倍數(shù)的?。

  31 32 33

  3 3+3 6+3

  一三得三 二三得六 三三得九

  引導(dǎo)學(xué)生討論得出:用依次1、2、3寫出3的倍數(shù)。

  3、深化。

  請(qǐng)寫出2的倍數(shù),5的倍數(shù)。

  學(xué)生練習(xí)后組織評(píng)講。

  4、引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律。

  小組討論:觀察這三道例子,你有什么發(fā)現(xiàn)?

  全班交流,概括規(guī)律,

  5、小結(jié):發(fā)現(xiàn)這些規(guī)律可以更好地幫助我們尋找一個(gè)數(shù)的倍數(shù)。

  四、探求一個(gè)數(shù)的因數(shù)。

  1、設(shè)疑。

  剛剛我們學(xué)會(huì)了找一個(gè)數(shù)的倍數(shù),接下來我們來找一個(gè)數(shù)的因數(shù)。

  請(qǐng)寫出36的因數(shù),你可以獨(dú)立思考,可以和同桌討論,看誰寫得又對(duì)又多。

  學(xué)生試寫36的因數(shù)。

  2、組織討論。

  你是怎么找36的因數(shù)的?

  ( )( )=36 從一道乘法算式中可以找到2個(gè)36的因數(shù),66=36呢?

  36( )=( ) 從一道除法算式中也可以找到2個(gè)36的因數(shù)。

  討論多。

  問:寫得完嗎?你可以按照什么順序?qū)懀?/p>

  師板書36的因數(shù)(從兩端往中間寫),同時(shí)指出 :當(dāng)兩個(gè)因數(shù)越來越接近時(shí),

  也就快要寫完了。最后寫上句號(hào)。

  3、鞏固深化。

  請(qǐng)寫出15的因數(shù),16的因數(shù)。

  學(xué)生練習(xí)后組織評(píng)講。

  4、引導(dǎo)觀察,發(fā)現(xiàn)規(guī)律。

  問:通過觀察這三道例子,你能發(fā)現(xiàn)什么規(guī)律?

  5、小結(jié):寫一個(gè)數(shù)的因數(shù)時(shí)可以從1和它本身來寫,從小到大依次尋找。

  五、鞏固拓展。

  1、完成想想做做第2、3題。

  學(xué)生填表后,組織討論,你是怎么填寫的?指名回答相應(yīng)的問題。

  2、猜數(shù)游戲。

  同學(xué)們下飛行棋時(shí),擲篩子,在1、2、3、4、5、6中進(jìn)行猜數(shù)

 。1)它是4的倍數(shù)。

 。2)它是9的因數(shù),又是3的倍數(shù)。

 。3)2和3都是它的倍數(shù)。

 。4)它是9的因數(shù),又是3的倍數(shù)。

 。5)它是這六個(gè)數(shù)的因數(shù)。

 。6)它是因數(shù)。

 。7)它既是本身的倍數(shù),又是本身的因數(shù)。

  教后反思:

  這是一節(jié)概念課,關(guān)于倍數(shù)和因數(shù)教材中沒有寫出具體的數(shù)學(xué)意義,只是借助乘法算式加以說明,進(jìn)而讓學(xué)生探究尋找一個(gè)數(shù)的倍數(shù)和因數(shù)。通過備課,我梳理出這樣一個(gè)教學(xué)脈絡(luò):乘法算式倍數(shù)和因數(shù)乘法算式找一個(gè)數(shù)的倍數(shù)和因數(shù)。從教材本身來看,這部分知識(shí)對(duì)于四年級(jí)學(xué)生而言,沒有什么生活經(jīng)驗(yàn),也談不上有什么新興趣,是一節(jié)數(shù)學(xué)味很濃的概念課。如何借助教材這一載體,讓學(xué)生在互動(dòng)、探究中掌握相應(yīng)的知識(shí),讓乏味變成有味呢?我從以下三個(gè)方面談一點(diǎn)教學(xué)體會(huì)。

  一、設(shè)疑遷移,點(diǎn)燃學(xué)習(xí)的火花。

  良好的開頭是成功的一半。我采用腦筋急轉(zhuǎn)彎中的一道題作為談話進(jìn)入正題,不僅可以調(diào)動(dòng)學(xué)生的學(xué)習(xí)興趣,看似不相關(guān)的兩件事例中隱藏著共同點(diǎn):一一對(duì)應(yīng)、相互依存。對(duì)感知倍數(shù)和因數(shù)進(jìn)行有效的滲透和拓展。

  教學(xué)找一個(gè)數(shù)的倍數(shù)時(shí),我依據(jù)學(xué)情,設(shè)計(jì)讓學(xué)生獨(dú)立探究尋找3的倍數(shù)。學(xué)生發(fā)現(xiàn)3的倍數(shù)寫不完時(shí)面面相覷,左顧右盼。學(xué)生通過討論,認(rèn)為用省略號(hào)表示比較恰當(dāng)。用語(yǔ)文中的一個(gè)標(biāo)點(diǎn)符號(hào)解決了數(shù)學(xué)問題,自己發(fā)現(xiàn)問題自己解決,學(xué)生從中體驗(yàn)到解決問題的愉快感和掌握新知的成就感。教師一聲親切的問候:怎么停下來了呢?、一聲驚訝:哦!寫不完呀?、一句激勵(lì):能想出辦法嗎??此平處煹」さ念A(yù)設(shè),是為了學(xué)生越位的生成。

  二、滲透學(xué)法,形成學(xué)習(xí)的技能。

  由于一個(gè)數(shù)倍數(shù)的個(gè)數(shù)是無限的,那么如何讓學(xué)生體會(huì)無限、又如何有序?qū)懗鰜砟?我設(shè)計(jì)了嘗試練習(xí)引出沖突討論探究這么一個(gè)學(xué)習(xí)環(huán)節(jié)。學(xué)生帶著又對(duì)又好的`要求開始自主練習(xí),學(xué)生找倍數(shù)的方法有:依次加3、依次乘1、2、3、用乘法口訣等等。在學(xué)生充分討論的基礎(chǔ)上,我組織學(xué)生圍繞好展開評(píng)價(jià),有的學(xué)生認(rèn)為:從小到大依次寫,因?yàn)橛行颍杂X得好;有的學(xué)生認(rèn)為:用乘法算式寫倍數(shù),既快而且不受前面倍數(shù)的影響,可以很快地找到第幾個(gè)倍數(shù)是多少,因?yàn)楹?jiǎn)捷正確率高所以覺得好。如此的交流雖然花費(fèi)了寶貴的學(xué)習(xí)時(shí)間,但是學(xué)生從中能體會(huì)

  您現(xiàn)在正在閱讀的《倍數(shù)和因數(shù)》教學(xué)設(shè)計(jì)及反思文章內(nèi)容由收集!本站將為您提供更多的精品教學(xué)資源!《倍數(shù)和因數(shù)》教學(xué)設(shè)計(jì)及反思到學(xué)習(xí)的方法,發(fā)展了思維,這才是最寶貴的。正所謂沒有一路上的山花爛漫,哪有山頂上的風(fēng)光無限。

  三、活用教材,拓展學(xué)習(xí)的深度。

  教材中安排36( )=( )這一道除法算式來找一個(gè)數(shù)的因數(shù)。我覺得這樣的設(shè)計(jì)可能會(huì)帶來幾點(diǎn)不足,其一:學(xué)生感知倍數(shù)和因數(shù)的概念、尋找一個(gè)數(shù)的倍數(shù)都是借助乘法算式,同樣,找一個(gè)數(shù)的因數(shù)也可以利用乘法,讓所學(xué)的知識(shí)形成系統(tǒng)豈不更有利于學(xué)生進(jìn)行有效學(xué)習(xí)嗎?其二:從學(xué)情來分析,相對(duì)于除法,學(xué)生更熟練、更喜歡運(yùn)用乘法。以學(xué)定教,真正做到以人為本。我在教學(xué)時(shí)引導(dǎo)學(xué)生討論得出:借助( )( )=36來尋找一個(gè)數(shù)的因數(shù)。

  課尾,我設(shè)計(jì)了一道擲篩子猜數(shù)練習(xí),通過7道題,將整堂課的內(nèi)容進(jìn)行整理和概括,對(duì)易混淆的概念加以比較,對(duì)后續(xù)的學(xué)習(xí)進(jìn)行適當(dāng)?shù)匿亯|。融知識(shí)性、趣味性為一體,收到了課雖止意未盡的良好效果。

  縱觀整節(jié)課,學(xué)生在學(xué)習(xí)過程中自始至終處于主體地位,嘗試練習(xí)、自主探索、解決問題,教師只是加以引導(dǎo),以合作者的身份參與其中。整節(jié)課似行云流水、波瀾不驚,但我想學(xué)生在思維上得到了訓(xùn)練,探究問題、尋求解決問題策略的能力也會(huì)逐步得到提高的。

因數(shù)和倍數(shù)教學(xué)反思15

  本節(jié)課的內(nèi)容是在學(xué)生已經(jīng)學(xué)習(xí)了一定的整數(shù)知識(shí)(包括整數(shù)的知識(shí)、整數(shù)的四則運(yùn)算及其應(yīng)用)的基礎(chǔ)上,進(jìn)一步認(rèn)識(shí)整數(shù)的性質(zhì)。本單元所涉及的因數(shù)和倍數(shù)都是初等數(shù)論的基礎(chǔ)知識(shí)。

  成功之處:

  1.理解分類標(biāo)準(zhǔn),明確因數(shù)和倍數(shù)的含義。在例1教學(xué)中,首先根據(jù)不同的除法算式讓學(xué)生進(jìn)行分類,同時(shí)思考其標(biāo)準(zhǔn)依據(jù)是什么。通過學(xué)生的獨(dú)立思考和小組交流學(xué)生得出:第一種是分為兩類:一類是商是整數(shù),另一類是商是小數(shù);第二種是分為三類:一類商是整數(shù),一類是小數(shù),另一類是循環(huán)小數(shù)。究竟怎樣分類讓學(xué)生在爭(zhēng)論與交流中達(dá)成一致答案分為兩類。然后根據(jù)第一類情況得出倍數(shù)和因數(shù)的`含義,特別強(qiáng)調(diào)的是對(duì)于因數(shù)和倍數(shù)的含義要符合兩個(gè)條件:一是必須在整數(shù)除法中,二是必須商是整數(shù)而沒有余數(shù)。具備了這兩個(gè)條件才能說被除數(shù)是除數(shù)的倍數(shù),除數(shù)是被除數(shù)的因數(shù)。

  2.厘清概念倍數(shù)和幾倍,注重強(qiáng)調(diào)倍數(shù)和因數(shù)的相互依存性。在教學(xué)中可以直接告訴學(xué)生因數(shù)和倍數(shù)都不能單獨(dú)存在,不能說2是因數(shù),12是倍數(shù),而必須說誰是誰的因數(shù),誰是誰的倍數(shù)。對(duì)于倍數(shù)與幾倍的區(qū)別:倍數(shù)必須是在整數(shù)除法中進(jìn)行研究,而幾倍既可以在整數(shù)范圍內(nèi),也可以在小數(shù)范圍內(nèi)進(jìn)行研究,它的研究范圍較之倍數(shù)范圍大一些。

  不足之處:

  1.練習(xí)設(shè)計(jì)容量少了一些,導(dǎo)致課堂有剩余時(shí)間。

  2. 對(duì)因數(shù)和倍數(shù)的含義還應(yīng)該進(jìn)行歸納總結(jié)上升到用字母來表示。

  再教設(shè)計(jì):

  1.根據(jù)課本的練習(xí)相應(yīng)的進(jìn)行補(bǔ)充。

  2.因數(shù)和倍數(shù)的含義用總結(jié)為a÷b=c(a、b、c均為非0自然數(shù)),a是b和c的倍數(shù),b和c是a的因數(shù)。