《圓柱體積》教學(xué)反思[合集15篇]
身為一位到崗不久的教師,教學(xué)是重要的工作之一,對(duì)教學(xué)中的新發(fā)現(xiàn)可以寫在教學(xué)反思中,教學(xué)反思應(yīng)該怎么寫呢?下面是小編為大家整理的《圓柱體積》教學(xué)反思,供大家參考借鑒,希望可以幫助到有需要的朋友。
《圓柱體積》教學(xué)反思1
(1)
本節(jié)可的教學(xué)內(nèi)容是九年義務(wù)教育六年級(jí)下冊(cè)的《圓柱的體積》,以前教學(xué)此內(nèi)容時(shí),直接告訴學(xué)生:圓柱的體積=底面積×高,用字母表示公式:V=Sh,讓學(xué)生套公式練習(xí);我教此內(nèi)容時(shí),不按傳統(tǒng)的教學(xué)方法,而是采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí)。對(duì)此,我作如下反思:
一、學(xué)生學(xué)到了有價(jià)值的知識(shí)。
學(xué)生通過實(shí)踐、探索、發(fā)現(xiàn),得到的知識(shí)是“活”的,這樣的知識(shí)對(duì)學(xué)生自身智力和創(chuàng)造力發(fā)展會(huì)起到積極的推動(dòng)作用。所有的答案也不是老師告訴的,而是、學(xué)生在自己艱苦的學(xué)習(xí)中發(fā)現(xiàn)并從學(xué)生的口里說出來的這樣的知識(shí)具有個(gè)人意義,理解更深刻。
二、培養(yǎng)了學(xué)生的科學(xué)精神和方法。
新課程改革明確提出要“強(qiáng)調(diào)讓學(xué)生通過實(shí)踐增強(qiáng)探究和創(chuàng)新意識(shí),學(xué)習(xí)科學(xué)研究的方法,培養(yǎng)科學(xué)態(tài)度和科學(xué)精神”。學(xué)生動(dòng)手實(shí)踐、觀察得出結(jié)論的過程,就是科學(xué)研究的過程。
三、促進(jìn)了學(xué)生的思維發(fā)展。
傳統(tǒng)的教學(xué)只關(guān)注教給學(xué)生多少知識(shí),把學(xué)生當(dāng)成知識(shí)的“容器”。學(xué)生的學(xué)習(xí)只是被動(dòng)地接受、記憶、模仿,往往學(xué)生只知其然而不知其所以然,其思維根本得不到發(fā)展。而這里創(chuàng)設(shè)了豐富的教學(xué)情景,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
本節(jié)課采用新的教學(xué)方法,取得了較好的`教學(xué)效果,不足之處是:由于學(xué)生自由討論、實(shí)踐和思考的時(shí)間較多,練習(xí)的時(shí)間較少。
(2)
圓柱的體積一課,重點(diǎn)是體積公式的推導(dǎo)。公式導(dǎo)出后,如何進(jìn)行計(jì)算應(yīng)用。
教學(xué)中學(xué)生存在的問題是:
1、學(xué)生對(duì)推導(dǎo)過程理解有困難,不深入;
2、在計(jì)算的過程中,單位名稱用錯(cuò),體積單位用面積單位。
3、對(duì)于書中所給的立體圖形,認(rèn)識(shí)不到位,不能正確分辨直徑、半徑以及圓柱的高,做題出錯(cuò)。圓柱的高也可以叫做圓柱的長(個(gè)別學(xué)生不清楚)
突破難點(diǎn)的方法:
1、為了避免單位名稱的錯(cuò)誤,可在課前復(fù)習(xí)中設(shè)計(jì)單位換算的填空題,辨析題等。例如:1平方米=()平方分米=()平方厘米100平方厘米=1立方分米。
2、在學(xué)生利用學(xué)具理解公式的推導(dǎo)過程時(shí),應(yīng)放手讓學(xué)動(dòng)手動(dòng)腦自己解決,但動(dòng)手之前一定要把任務(wù)布置清楚,讓孩子們自己發(fā)現(xiàn)圓柱與長方體各部分之間的關(guān)系,從而推導(dǎo)出圓柱的體積公式。
3、注意引導(dǎo)學(xué)生參與到探索知識(shí)的發(fā)生發(fā)展過程中,突破以往數(shù)學(xué)學(xué)習(xí)單一、被動(dòng)的學(xué)習(xí)方式,關(guān)注學(xué)生的實(shí)踐活動(dòng)和直接經(jīng)驗(yàn),“通過自己的活動(dòng)”獲得情感、能力、智力的全面發(fā)展。小學(xué)階段,操作活動(dòng)是數(shù)學(xué)活動(dòng)的重要組成部分,也是學(xué)生學(xué)習(xí)活動(dòng)的重要方式。
《圓柱體積》教學(xué)反思2
一、擺脫情境困擾,追求簡單高效
圓柱的體積教學(xué)是小學(xué)幾何知識(shí)的重頭戲,教學(xué)這節(jié)課時(shí),我首先搜集了網(wǎng)上的大量課例,想尋找一些靈感來裝飾這節(jié)課的開頭——?jiǎng)?chuàng)設(shè)怎樣的情境才能新穎又能夠?yàn)檎?jié)課的教學(xué)服務(wù)呢?想了好幾套方案最后還是采用創(chuàng)設(shè)情景,由圓柱體水杯裝水,引出圓柱體,再由圓柱體水的體積引出圓柱體體積的求法。板書“圓柱的體積”課本是先讓學(xué)生回憶“長方體,正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。我認(rèn)為,首先應(yīng)復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,接著在回憶了長方體,正方體體積計(jì)算方法之后,再接著探究。這樣由平面圖形到立體圖形,過度自然、流暢,便于學(xué)生的思維走向正確方向,這時(shí)教師的引導(dǎo)才是行之有效的。
二、建立切拼表象,滲透極限思想
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),為了讓學(xué)生充分體會(huì),我把操作的機(jī)會(huì)給了學(xué)生。讓學(xué)生分組試驗(yàn)探究,接著再結(jié)合多媒體演示讓學(xué)生感受,把圓柱的底面分的份數(shù)越多,切開后拼起來的圖形就越接近長方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的.長度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。我使用了—————把圓柱體沿著它的直徑切成諾干等份,拼成一個(gè)近似的長方體,展示切拼過程。讓學(xué)生一目了然。
三、練習(xí)層層遞進(jìn),弱化繁瑣計(jì)算
為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。通過反思,我概括出四種類型:
1、已知圓柱底面積(s)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh。
2、已知圓柱底面半徑(r)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πr2 h。
3、已知圓柱底面直徑(d)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2)2 h。
4、已知圓柱底面周長(c)和高(h),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)2 h。
在鞏固練習(xí)中,只要從這四種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計(jì)算圓柱體積的方法。課堂上的時(shí)間有限,課本的標(biāo)注也有:今后涉及圓柱圓錐的計(jì)算可以使用計(jì)算器。所以這節(jié)課教學(xué)時(shí)基本沒有讓學(xué)生參與繁瑣的計(jì)算,學(xué)生學(xué)的也很輕松。
《圓柱體積》教學(xué)反思3
學(xué)案---回憶:長方體的體積怎樣計(jì)算?圓的面積計(jì)算公式是怎樣推導(dǎo)出來的呢?重點(diǎn)研究區(qū)域:圓柱體的體積怎樣計(jì)算?
上課時(shí),學(xué)案部分學(xué)生回答的很好,長方體的體積=長×寬×高,當(dāng)我指著長方體的底面時(shí),學(xué)生就說,長方體的體積=底面積×高。學(xué)生對(duì)于圓的面積計(jì)算公式的的推導(dǎo)記憶猶新,這是很值得我高興的。面對(duì)本課的重點(diǎn)解決問題,我滿懷信心(兩個(gè)復(fù)習(xí)問題的鋪墊,學(xué)生會(huì)首先想起來把圓柱體按照?qǐng)A的面積推導(dǎo)過程一樣,來等分圓柱體),開始引導(dǎo)學(xué)生獨(dú)立思考,怎樣計(jì)算圓柱體的體積?正當(dāng)大家苦思冥想的時(shí)候,高邁把手舉得高高的.:老師,我想出來一種。又是他,每次回答問題總是第一個(gè)舉手,把別人的“風(fēng)頭”都給搶去了,他是一個(gè)愛表現(xiàn)的學(xué)生,為了不影響其他學(xué)生思考,每次我總是“壓一壓”他的積極性!敖o大家留一點(diǎn)思考的時(shí)間,等一會(huì)再說你的方法”,誰知道這個(gè)“積極分子”不容我把話說完,(www.fwsir.com)已經(jīng)拿著自己的圓柱體跑到講臺(tái)上了,(哎,讓我怎么評(píng)價(jià)他呢,耐不住性子啊,再穩(wěn)重一些多好。浚,:我是這樣想的,這是一個(gè)圓柱體的生日蛋糕,我想把它橫著切成一個(gè)個(gè)圓片,分給你們吃。霎時(shí)間,下面的同學(xué)都笑了,過了一會(huì),一個(gè)學(xué)生提問:切蛋糕,和圓柱體的體積有什么關(guān)系?“有啊,這個(gè)圓柱體蛋糕的體積就是每一個(gè)圓片的面積乘上圓片的'個(gè)數(shù)!边@樣解釋完,下面的學(xué)生有的在笑,有的在議論,還有的再思考。這個(gè)時(shí)候我用課件利用動(dòng)畫讓學(xué)生又重溫了以上過程。
整個(gè)課堂生動(dòng)、活潑,學(xué)生思維活躍,在動(dòng)、論、看等過程中學(xué)生輕松的掌握了圓柱體積公式。
《圓柱體積》教學(xué)反思4
本節(jié)課我注重知識(shí)的形成過程,使學(xué)生能主動(dòng)學(xué)習(xí)新知,突破難點(diǎn)、疑點(diǎn),能解決實(shí)際問題。
1、在教學(xué)過程中,讓學(xué)生自主合作、探究,經(jīng)歷猜想、操作、驗(yàn)證、討論、歸納等數(shù)學(xué)活動(dòng)。比如,我從圓柱模型拼成長方體入手,強(qiáng)調(diào)它們是等底等高長方體。由長方體體積公式V=Sh,猜想圓柱的體積公式。再通過學(xué)生的具體實(shí)際操作、小組合作探究,從而探索出圓柱體積公式,并掌握?qǐng)A柱體積的計(jì)算方法,能解決與圓柱體積計(jì)算相關(guān)的一些簡單的實(shí)際問題。
2、在活動(dòng)中進(jìn)一步使學(xué)生體會(huì)“轉(zhuǎn)化”方法的價(jià)值,比如,回顧上學(xué)期所學(xué)的圓的面積推導(dǎo)公式,從而理解圓柱的底面積與長方體底面積相等。這樣有利于培養(yǎng)學(xué)生應(yīng)用已有知識(shí)解決新問題的能力,發(fā)展空間觀念和初步的推理能力。
3、本節(jié)課中,我最大的遺憾就是沒有采用多媒體課件。但我認(rèn)為一節(jié)好課就非要使用多媒體課件嗎?其實(shí)不然。當(dāng)然,今天我在教學(xué)中,確實(shí)有許多的不足。比如,將圓柱體切割成若干等份,等份越多,分得越細(xì),就越接近于長方體。倘若使用了多媒體課件演示,或許效果更明顯。
總之,今天教學(xué)中的'不足,我會(huì)不斷改進(jìn)。既面向全體學(xué)生,又注重不同學(xué)生的不同發(fā)展,設(shè)計(jì)更精、更符合學(xué)生發(fā)展的梯度問題,讓他們?cè)谟邢薜臅r(shí)空內(nèi)愉快學(xué)習(xí)、成長!
《圓柱體積》教學(xué)反思5
案例背景:
《數(shù)學(xué)課程標(biāo)準(zhǔn)》指出:數(shù)學(xué)是人們對(duì)客觀世界定性把握和定量刻畫、逐漸抽象概括形成方法和理論并進(jìn)行廣泛應(yīng)用的過程。這一描述,明確了小學(xué)數(shù)學(xué)的內(nèi)涵,即數(shù)學(xué)學(xué)習(xí)是一個(gè)過程。近日,在市小學(xué)數(shù)學(xué)名師課堂教學(xué)展示中,天福小學(xué)的劉愛芳校長執(zhí)教的《圓柱的體積》一課,使我對(duì)個(gè)人的專業(yè)素養(yǎng)和課堂的設(shè)計(jì)內(nèi)涵,都有了很深的觸動(dòng)。
案例描述:
片段一:
師:同學(xué)們,往這里看,今天老師帶來了三件物體:玻璃杯、橡皮泥、金屬零件。這三件物體有什么共同點(diǎn)?
生:都是圓柱。
師:圓柱形的物體生活中很多,以這三樣為例,你能提出哪些數(shù)學(xué)問題?
生1:水杯的容積是多少?
生2:水杯的表面積是多少?
生3:水杯的體積是多少?
師:這三個(gè)問題很好,我們記下一個(gè)。
師板書,水杯容積
生繼續(xù)提出關(guān)于橡皮泥和金屬容器的體積的問題,師板書:橡皮泥體積,金屬零件體積。
師:關(guān)于表面積的問題前面我們已經(jīng)研究過,這節(jié)課我們來研究圓柱體積的問題。
師板書:圓柱體積
師:以你現(xiàn)在的知識(shí)儲(chǔ)備,你能解決哪個(gè)問題?
生:水杯的容積
師:怎樣求?
生:可以把水杯的裝滿水,倒進(jìn)一個(gè)長方體的容器中,計(jì)算出長方體容器中水的體積,也就求出了水杯的容積。
師:瞧,“裝滿水”,“滿”這個(gè)字用的多好,把水杯中的水倒進(jìn)長方體容器中,從而求出水的體積。在這個(gè)過程中,運(yùn)用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化。
師板書:倒---長方體,轉(zhuǎn)化。
師:在轉(zhuǎn)化過程中,水的什么變了?什么沒變?
生:水的形狀變了,體積沒變。
師:水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?
師:根據(jù)學(xué)生回答分別板書:捏---正方體,浸----長方體。
師:剛才我們根據(jù)這三個(gè)物體的共同特點(diǎn),通過轉(zhuǎn)化,把它們轉(zhuǎn)化成我們以前學(xué)過的長方體或正方體的體積。是不是通過這三個(gè)方法,就可以解決所有的圓柱的體積的問題?
生:不能。
師:為什么?
生交流,得知物體很大時(shí),沒法進(jìn)行轉(zhuǎn)化。
師:因此,我們需要尋找一種通用的方法,你想到了什么方法?
生:計(jì)算。
師:圓柱體體積與什么有關(guān)?猜想一下怎樣計(jì)算?
……
片段二:
師:回顧這節(jié)課的學(xué)習(xí)過程,你認(rèn)為你最有收獲的是什么?
師:前面大家根據(jù)長方體和正方體的體積公式猜測(cè)出圓柱的體積公式也是底面積×高,通過驗(yàn)證得知大家的猜測(cè)是正確的。
師:這三個(gè)立體圖形有什么共同點(diǎn)?
師:像這樣的形體在數(shù)學(xué)上叫做直柱體。
課件出示:長方體、正方體、圓柱及它們的體積公式都是底面積×高。
師:生活中的直柱體還有哪些?
師:它們的形體是否也是底面積×高?有興趣的同學(xué)可以課后研究。
案例反思:
片段一的教學(xué)中,教師出示了三樣精心準(zhǔn)備的物體----玻璃杯、橡皮泥、金屬零件(都是圓柱體),在學(xué)生圍繞這三種物體提出數(shù)學(xué)問題后,教師并沒有直接引導(dǎo)學(xué)生去探求如何計(jì)算圓柱體的體積,而是通過“以你現(xiàn)在的知識(shí)儲(chǔ)備,你能解決哪個(gè)問題?”“在轉(zhuǎn)化過程中,水的什么變了?什么沒變?”“瞧,‘裝滿水’,‘滿’這個(gè)字用的多好,把水杯中的水倒進(jìn)長方體容器中,從而求出水的體積。在這個(gè)過程中,運(yùn)用了一種重要的數(shù)學(xué)思想方法----轉(zhuǎn)化。”“水杯的容積解決了,橡皮泥的體積呢?金屬零件的體積呢?”這些引導(dǎo)性語言,使學(xué)生明白有些物體的體積可以分別通過倒、捏、浸轉(zhuǎn)化成長方體或正方體的體積來解決,“轉(zhuǎn)化”的提出為學(xué)生后面構(gòu)建數(shù)學(xué)模型,探究圓柱體積公式奠定了基礎(chǔ)。緊接著“是不是通過這三個(gè)方法,就可以解決所有的圓柱的`體積的問題?”這個(gè)問題,點(diǎn)燃了學(xué)生的探究欲望,這是這節(jié)課成功的起點(diǎn),通過極限思想的滲透,使學(xué)生體會(huì)到了探究圓柱體積的計(jì)算方法的必要性。
片段二的教學(xué)中,教師在引導(dǎo)學(xué)生進(jìn)行學(xué)習(xí)反思的基礎(chǔ)上,進(jìn)行了拓展延伸。通過對(duì)長方體、正方體、圓柱體積公式的歸納匯總,引出直柱體的概念,學(xué)生進(jìn)行了對(duì)直柱體表象的交流。此時(shí),學(xué)生的探究欲望、學(xué)習(xí)激情,并沒有隨著課的尾聲而有所減弱,而是探究熱情再一次被點(diǎn)燃,孩子們帶著強(qiáng)烈的研究熱情結(jié)束了本節(jié)課的學(xué)習(xí)。
教材是一種重要的課程資源,對(duì)于學(xué)校和教師來說,課程實(shí)施更多地應(yīng)該是如何更好地“用教材”,而不是簡單地“教教材”。我們?cè)谟媒滩臅r(shí)不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實(shí)際的“跳板”。因此,教學(xué)時(shí),我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實(shí)際,研究學(xué)生學(xué)習(xí)起點(diǎn),讓學(xué)生親歷完整的數(shù)學(xué)學(xué)習(xí)過程,觸摸數(shù)學(xué)鮮活生動(dòng)的生命脈息,體會(huì)到知識(shí)產(chǎn)生過程中的前因和后果,從而進(jìn)行有效的數(shù)學(xué)思考。
《圓柱體積》教學(xué)反思6
一、我在導(dǎo)入時(shí),突破教材,有所創(chuàng)新 圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。我認(rèn)為,不妨在回憶了長方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的`方向,這時(shí)教師的引導(dǎo)才是行之有效的。
二、我教學(xué)新課時(shí),實(shí)現(xiàn)人人參與,主動(dòng)學(xué)習(xí) 學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),教師應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。教學(xué)“圓柱的體積”時(shí),由于學(xué)校教學(xué)條件差,沒有更多的學(xué)具提供給學(xué)生,只是由教師示范演示推導(dǎo)過程:把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體;接著教師指導(dǎo)學(xué)生悟出這個(gè)長方體的長相當(dāng)于圓柱的哪一部分的長度,寬是圓柱哪一部分的長度,高是圓柱的哪一部分的長度,圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。學(xué)生沒有親身參與操作,就缺乏情感空間感覺的體驗(yàn),而且這部分又是小學(xué)階段立體圖形的教學(xué)難點(diǎn),學(xué)生得不到充分的思考空間,也不利于教師營造思考的環(huán)境,不便于學(xué)生思考如何利用已知圖形體積和教學(xué)思想去解決這一問題。學(xué)生缺乏行為、認(rèn)知的投入和積極的情感投入,所以,課堂效果差就可想而知了。
三、我在 練習(xí)時(shí),形式多樣,層層遞進(jìn) ,例題“練一練”中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思。
《圓柱體積》教學(xué)反思7
[頭疼問題]
近期六年級(jí)的任課教師都會(huì)頭疼我們也不例外
年級(jí)組集體備課時(shí)會(huì)嘆氣
在走廊里碰頭時(shí)會(huì)感慨
嘆氣、感慨地主要原因就是:近期作業(yè)的錯(cuò)誤率很高(特別是學(xué)困生)
這使我不免停下“匆匆的步伐”凝望著這些作業(yè)叉叉多的孩子
什么地方出問題了?
[細(xì)細(xì)掂量]
一輪本子改下來錯(cuò)誤有以下幾類
1、優(yōu)等生:列出一個(gè)長長的算式,直接得出錯(cuò)誤的結(jié)果(看不出是哪一步出錯(cuò),反正計(jì)算錯(cuò))
2、中等生:求表面積時(shí),大概知道側(cè)面積+兩個(gè)底面積;但真正列式的時(shí)候底面積沒乘2;而到了只需要加一個(gè)底面積的時(shí)候(無蓋水桶等實(shí)際問題的時(shí)候)卻乘2;
3、學(xué)困生:列出的算式都有問題。一查,圓面積計(jì)算公式都不會(huì)(夠厲害),最基本的都不會(huì),圓柱的表面積和體積又如何能正確求出;個(gè)別的20多分鐘頭都不抬,就在計(jì)算一個(gè)圖形題,仔細(xì)一看列式出錯(cuò),后面的脫式計(jì)算過程中的結(jié)果有的有6、7位小數(shù);依然不知疲倦的算啊算,看著都累
4、不知靈活變通,一般來講3.14最好是最后再乘,這樣可以降低計(jì)算的復(fù)雜程度,減輕計(jì)算的強(qiáng)度;但部分學(xué)困生勇氣可嘉,不管那一套,列式中3.14在前面就先算;放在后頭就最后算,老實(shí)得可愛;當(dāng)你在講計(jì)算技巧的時(shí)候可愛的孩子們還在埋頭苦算,結(jié)果錯(cuò)誤百出。
[標(biāo)本兼治]
1、學(xué)優(yōu)生:提出要求:不能一步得出結(jié)果,要脫式:關(guān)注做作業(yè)、打草稿的態(tài)度、習(xí)慣,養(yǎng)成草稿本清晰、數(shù)字清楚,可以避免匆忙之中抄錯(cuò)數(shù)字導(dǎo)致整題出錯(cuò)。
2、中等生、學(xué)困生:
(1)重視公式的熟練程度:通過演示、推導(dǎo)、同桌互說、單獨(dú)抽問、上黑板默寫等方法幫助夯實(shí)基礎(chǔ)。
(2)重點(diǎn)分析典型習(xí)題,幫助學(xué)生找到審題、列式、解題的.方法和策略,并針對(duì)性練習(xí),提高技能
。3)重點(diǎn)強(qiáng)記:3.14*1=…………………3.14*9= 常用計(jì)算結(jié)果,達(dá)到熟練程度,提高練習(xí)時(shí)的計(jì)算速度和正確率,也可以用于檢驗(yàn)計(jì)算過程中的結(jié)果正確與否。
。4)抓聽講習(xí)慣:要求要嚴(yán)格,教師針對(duì)問題進(jìn)行分析、講評(píng)的時(shí)候,應(yīng)要求所有學(xué)生抬頭關(guān)注,集中精力聽講(往往這樣的時(shí)候?qū)W困生是不睬你的,要適當(dāng)?shù)暮八饋碚緜(gè)1分多鐘,點(diǎn)一點(diǎn)他。),有了這個(gè)保證,講評(píng)的效果就有了,出錯(cuò)的幾率就就會(huì)降低了。再結(jié)合以上措施,效果就會(huì)更好。
[寫在結(jié)尾]
有了措施,就需要有行動(dòng)——老師的行動(dòng)、學(xué)生的行動(dòng)都要跟上,希望一段日子后會(huì)有好效果。
也歡迎大家說說自己的好的做法,共同提高第二單元的質(zhì)量
《圓柱體積》教學(xué)反思8
《圓柱的體積》不僅要讓學(xué)生掌握?qǐng)A柱體積的計(jì)算方法,最重要的是掌握學(xué)習(xí)的思想方法(轉(zhuǎn)化),因此,教學(xué)新課前,復(fù)習(xí)了圓的面積公式的推導(dǎo)過程,以及長方體正方體的體積計(jì)算公式。為轉(zhuǎn)化做好了鋪墊。課上,出示課件:等底等高的長方體、正方體、圓柱,學(xué)生通過觀察,作出猜測(cè):(1)圓柱的體積等于長方體和正方體的體積。(2)圓柱的體積也等于底面積乘高。猜測(cè)是否準(zhǔn)確呢?點(diǎn)燃學(xué)生的學(xué)習(xí)欲望。讓學(xué)生根據(jù)圓的面積公式的推導(dǎo)過程,讓學(xué)生遷移想:圓柱體能轉(zhuǎn)化成什么幾何形體,然后讓學(xué)生用教具驗(yàn)證圓柱轉(zhuǎn)化成長方體過程,并討論思考:這個(gè)圓柱體與轉(zhuǎn)化后的長方體相比什么變了,什么沒變?從而得出結(jié)論圓柱的體積等于底面積乘以高。有一種推導(dǎo)過程是我沒有預(yù)設(shè)到的:一學(xué)生回答,長方體的'長是圓柱的底面周長的一半,寬是底面半徑,高不變。所以圓柱體積=底面周長的一半×底面半徑×高。我沒有否定她的回答,接著又讓學(xué)生動(dòng)手實(shí)踐操作,讓學(xué)生發(fā)現(xiàn)長方體與圓柱之間的聯(lián)系,利用圓的周長和面積把圓柱體積的也轉(zhuǎn)化成底面積乘以高。這樣有學(xué)生的積極主動(dòng)的參與,不僅創(chuàng)造性的建立了數(shù)學(xué)模型而且發(fā)現(xiàn)圓柱體的轉(zhuǎn)換成長方體的規(guī)律,掌握了一種重要的學(xué)習(xí)方法,轉(zhuǎn)化。
為了培養(yǎng)學(xué)生解題的靈活性,進(jìn)行分層練習(xí),拓展知識(shí),發(fā)散思維。如:已知圓柱底面積和高,怎樣求圓柱體積;已知圓柱底面半徑和高,怎樣求圓柱體積;已知圓柱底面直徑和高,怎樣求圓柱體積;已知圓柱底面周長和高,怎樣求圓柱體積;已知圓柱側(cè)面積和高,怎樣求圓柱體積;已知圓柱底面積和體積,怎樣求高;已知圓柱體積和高,怎樣求底面積等。
在本節(jié)課的教學(xué)過程中還存在諸多的問題。
1、演示圓柱的體積的時(shí)候,因?yàn)閷W(xué)生手中沒有學(xué)具,教師教具的局限性,演示時(shí)后面的學(xué)生看不清楚。
2、在圓柱體經(jīng)過切割、拼接之后轉(zhuǎn)化為近似長方體
的時(shí)候,應(yīng)多給后進(jìn)生留有觀察、討論的時(shí)間,他們的思維反應(yīng)能力比其他學(xué)生較慢,應(yīng)給于他們一定的空間和時(shí)間,讓后進(jìn)生也積極參與到課堂的學(xué)習(xí)中,使全班同學(xué)共同進(jìn)步。
3、在解決實(shí)際問題的時(shí)候,不僅要注重公式的應(yīng)用,還要注意計(jì)算能力的培養(yǎng)。
《圓柱體積》教學(xué)反思9
在新課程不斷向縱深推進(jìn)的今天,我們的課堂既要繼承傳統(tǒng),把課上雜實(shí)。同時(shí),也要把課上厚實(shí)。在教《圓柱的體積》一課時(shí),我采用新的教學(xué)理念,讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),從而獲得知識(shí),并利用新知去解決實(shí)際問題。對(duì)此,我作如下反思:
(一)在學(xué)習(xí)情境中體驗(yàn)數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、猜測(cè)、操作、驗(yàn)證、歸納等活動(dòng)中逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的價(jià)值,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。
在這節(jié)課中,我承接了上節(jié)課的.內(nèi)容,提問引出給水杯做布套是在求圓柱的表面積,求圓柱能裝多少水是在求圓柱的容積,也就是體積,然后順勢(shì)提出你能計(jì)算圓柱體的體積嗎?這一全課的核心問題,從而引發(fā)學(xué)生的猜測(cè)、討論、交流等數(shù)學(xué)活動(dòng),引導(dǎo)學(xué)生可以用以前學(xué)過的知識(shí)將圓柱轉(zhuǎn)化成近似的長方體,然后讓學(xué)生在小組內(nèi)利用手中的學(xué)具進(jìn)行操作實(shí)驗(yàn)將其插拼成一個(gè)近似長方體;通過讓學(xué)生觀察比較,發(fā)現(xiàn)聯(lián)系:二者之間什么變了,什么不變?接著我使用了課件-----把圓柱體沿著它的直徑切成了32和64等份,拼成一個(gè)近似的長方體 ,展示切拼后的長方體,讓學(xué)生更加直觀的觀察,從而證實(shí)自己的推測(cè)。并總結(jié)出圓柱體的體積計(jì)算公式。。
由此至終讓學(xué)生經(jīng)歷了做數(shù)學(xué)的過程,并伴隨著問題的圓滿解決,又使學(xué)生體驗(yàn)到了成功的喜悅與滿足。與此同時(shí),使學(xué)生理解與感受到了數(shù)學(xué)的魅力。
(二)在觀察操作中探索新知
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、驗(yàn)證、推理等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。觀察是課程實(shí)施中經(jīng)常讓學(xué)生進(jìn)行的一種活動(dòng),觀察的效果取決于觀察者是否能夠關(guān)注被觀察的對(duì)象。操作是讓學(xué)生進(jìn)行感知的另一種活動(dòng),是一種內(nèi)部思維的外在具體化。交流是在觀察操作基礎(chǔ)上的一種由動(dòng)作上升到語言概括的過程。
在本節(jié)課的動(dòng)手操作中,讓全班學(xué)生以小組為單位圍坐在一起,為他們提供自主探究的空間,同時(shí)盡量延長小組交流的時(shí)間,試圖把學(xué)習(xí)的時(shí)間、空間還給學(xué)生,讓其進(jìn)行自主探究、合作交流。 你有什么發(fā)現(xiàn)?你是怎樣想的?等這樣一些指向探索的話語鼓勵(lì)學(xué)生獨(dú)立思考、動(dòng)手操作、合作探究,讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)自己的數(shù)學(xué),而不是去模仿復(fù)制別人的數(shù)學(xué)。
(三)在練習(xí)中鞏固新知,提升能力
《數(shù)學(xué)課程標(biāo)準(zhǔn)》要求以人為本,以學(xué)生發(fā)展為本。因此,教師應(yīng)根據(jù)不同的教學(xué)內(nèi)容精心設(shè)計(jì)練習(xí),促進(jìn)學(xué)生全面發(fā)展。我充分考慮到本班學(xué)生的實(shí)際水平及年齡特征,選擇了貼近學(xué)生生活的練習(xí)題,有坡度,由易到難,循序漸進(jìn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,使各個(gè)層次的學(xué)生都能得到不同的鍛煉,能力都有所提升。
(四)在本節(jié)課中的不足之處
由于學(xué)生的學(xué)具有限,在很大程度上阻礙了學(xué)生主動(dòng)探究的欲望和動(dòng)手操作的能力,加上本人能力有限,語言組織能力不是很好,使課堂氣氛不是那么活躍,課堂顯得有些壓抑,在今后的教學(xué)中還有待于提高。
《圓柱體積》教學(xué)反思10
“圓柱的體積”一課是在學(xué)生已經(jīng)學(xué)習(xí)了“正方體的體積”和“長方體的體積”“圓柱的認(rèn)識(shí)”“圓柱的表面積”等相關(guān)知識(shí)的基礎(chǔ)上進(jìn)行教學(xué)的。同時(shí)又是為學(xué)生今后進(jìn)一步學(xué)習(xí)其他立體圖形的有關(guān)知識(shí)做好充分準(zhǔn)備的一堂課。結(jié)合本課的教學(xué)實(shí)際情況,反思如下:
一、創(chuàng)設(shè)問題情境。
上課開始提出“我們認(rèn)識(shí)了哪些立體圖形?它們的體積怎樣求?現(xiàn)在我想知道這塊橡皮泥的體積或這個(gè)瓶子的容積,該怎么辦?”學(xué)生提出“把橡皮泥捏成長方體的形狀,把瓶子里裝滿水,再倒入一個(gè)長方體的`盒子里,就可以求出來瓶子的容積了”。這樣不斷地引導(dǎo)學(xué)生運(yùn)用已有的生活經(jīng)驗(yàn)和舊知,探索和解決實(shí)際問題,并制造認(rèn)知沖突,形成了“任務(wù)驅(qū)動(dòng)”的探究氛圍。
二、知識(shí)過程,讓學(xué)生在參與中學(xué)習(xí)。
首先讓學(xué)生大膽猜想,圓柱體的體積可能等于什么?大部分學(xué)生猜測(cè)圓柱體的體積可能等于底面積×高。然后小組同學(xué)想辦法加以驗(yàn)證。有的組將圓柱體橡皮泥捏成長方體,計(jì)算出了橡皮泥的體積。有的組通過圓的面積公式推導(dǎo),將圓柱體分成若干等分后再拼成長方體。通過計(jì)算長方體的體積推導(dǎo)出圓柱體的體積。然后讓學(xué)生比較圓柱體的底面積、高與長方體的底面積、高之間的關(guān)系,使學(xué)生確信自己的猜想是正確的。
三、在討論交流中學(xué)。
通過實(shí)驗(yàn)驗(yàn)證之后,讓學(xué)生看書自學(xué),按照書中介紹的方法自己推導(dǎo)出圓柱體的體積公式。小組進(jìn)行如下討論:
(1)拼成的近似長方體體積與原來的圓柱體積有什么關(guān)系?
(2)拼成的近似長方體的底面積與原來的圓柱底面積有什么關(guān)系?
(3)拼成的近似長方體的高與原來的圓柱高有什么關(guān)系?這樣不僅為學(xué)生提供動(dòng)手操作、觀察以及交流討論的平臺(tái),而且還發(fā)揮了學(xué)生的主動(dòng)性。
在這一環(huán)節(jié)中我處理的有點(diǎn)倉促,沒有給所有學(xué)生充分的思考和探究的時(shí)間。如能抓住這一契機(jī)讓全體學(xué)生都去操作、思考、探究可能會(huì)更有利于學(xué)生理解和掌握公式。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,要根據(jù)教學(xué)要求,優(yōu)化課堂教學(xué)的需要對(duì)教材進(jìn)行適當(dāng)?shù)募庸ぬ幚怼?/p>
《圓柱體積》教學(xué)反思11
一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)
《課程標(biāo)準(zhǔn)》指出:要?jiǎng)?chuàng)設(shè)與學(xué)生生活環(huán)境、知識(shí)背景密切相關(guān)的,又是學(xué)生感興趣的學(xué)習(xí)情境,讓學(xué)生在觀察、操作、猜測(cè)、交流、反思等活動(dòng)中逐步體會(huì)數(shù)學(xué)知識(shí)的產(chǎn)生、形成與發(fā)展的過程,獲得積極的情感體驗(yàn),感受數(shù)學(xué)的力量,同時(shí)掌握必要的基礎(chǔ)知識(shí)與基本技能。在本節(jié)課中,我從生活情境入手,先復(fù)習(xí)了長方體、正方體體積的計(jì)算,然后順勢(shì)提出“如何計(jì)算圓柱體的體積”這一全課的核心問題,從而引發(fā)學(xué)生的猜測(cè)、操作、交流等數(shù)學(xué)活動(dòng),使學(xué)生經(jīng)歷了“做數(shù)學(xué)”的過程。伴隨著問題的圓滿解決,學(xué)生體驗(yàn)到了成功的喜悅與滿足。在體驗(yàn)“生活數(shù)學(xué)”的過程中,學(xué)生理解與感受到了數(shù)學(xué)的魅力,獲得了個(gè)人生存與發(fā)展的必需的數(shù)學(xué)。
二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流
數(shù)學(xué)學(xué)習(xí)過程充滿著觀察、實(shí)驗(yàn)、模擬、推斷等探索性與挑戰(zhàn)性活動(dòng),因此,動(dòng)手實(shí)踐、自主探究、合作交流是《課程標(biāo)準(zhǔn)》所倡導(dǎo)的數(shù)學(xué)學(xué)習(xí)的主要方式。教師要改變以例題、示范、講解為主的教學(xué)方式,引導(dǎo)學(xué)生投入到探索與交流的學(xué)習(xí)活動(dòng)之中。在本節(jié)課中,我讓全班學(xué)生以小組為單位圍坐在一起,為他們提供自主探究的空間,同時(shí)盡量延長小組交流的時(shí)間,試圖把學(xué)習(xí)的時(shí)間、空間還給學(xué)生,讓其進(jìn)行自主探究、合作交流。數(shù)學(xué)的.價(jià)值不在技能而在思想,在探究的過程中,我不是安排了一整套指令讓學(xué)生進(jìn)行程序操作,獲得一點(diǎn)基本技能,而是提供了相關(guān)知識(shí)背景、實(shí)驗(yàn)素材,使用了“對(duì)我們有幫助嗎?”“你有什么發(fā)現(xiàn)?”“你是怎樣想的?”等這樣一些指向探索的話語鼓勵(lì)學(xué)生獨(dú)立思考、動(dòng)手操作、合作探究,讓學(xué)生根據(jù)已有的知識(shí)經(jīng)驗(yàn)創(chuàng)造性地建構(gòu)自己的數(shù)學(xué),而不是去模仿復(fù)制別人的數(shù)學(xué)。因?yàn)槲蚁耄鹤约旱,才是有價(jià)值的。
三、鼓勵(lì)解決問題策略的多樣化
《課程標(biāo)準(zhǔn)》指出:鼓勵(lì)解決問題策略的多樣化,是因?yàn)槭┙,促進(jìn)每一個(gè)學(xué)生充分發(fā)展的有效途徑。本節(jié)課在自主探究階段,我鼓勵(lì)學(xué)生用多種方法把圓柱體轉(zhuǎn)化成長方體。在鞏固發(fā)展階段,我設(shè)計(jì)了兩道開放性的習(xí)題,其中計(jì)算圓柱體積木體積,可以從測(cè)量圓柱的底面半徑、直徑、周長等不同角度求解;計(jì)算旋轉(zhuǎn)直尺所形成的圓柱體積一題,旋轉(zhuǎn)軸不同得到的圓柱體是完全不一樣的,這體現(xiàn)了解題方法的多樣性。這樣安排從表面上看,似乎只是學(xué)生的空間觀念、基本技能得到了培養(yǎng);但深層次地分析,可以發(fā)現(xiàn)學(xué)生的思維得到了發(fā)展,創(chuàng)新精神、實(shí)踐能力得到了提高。這些具有多樣化解決策略的開放性的問題能盡可能地保證每個(gè)學(xué)生在掌握數(shù)學(xué)基本技能的前提下,不同的人在數(shù)學(xué)上得到不同的發(fā)展。
《圓柱體積》教學(xué)反思12
精心研究教材是用好教材的基礎(chǔ) 教材作為教學(xué)的憑借與依據(jù),只不過是編者對(duì)學(xué)科知識(shí)、國家要求與學(xué)生進(jìn)行整和思考的結(jié)晶。但由于受時(shí)間與地域的影響,我們?cè)趫?zhí)行教材時(shí)不能把它作為一種“枷鎖”,而應(yīng)作為“跳板”——編者意圖與學(xué)生實(shí)際的“跳板”。因此,教學(xué)時(shí),我們要精心研究教材,揣摩編者意圖、考慮學(xué)生實(shí)際,創(chuàng)造性地利用教材。
1、挖掘訓(xùn)練空白,及時(shí)補(bǔ)白教材。編者在編寫教材時(shí),也考慮了地域、學(xué)科、時(shí)間等因素,留下了諸多空白,我們使用教材時(shí),要深入挖掘其中的訓(xùn)練空白,及時(shí)補(bǔ)白教材。[片段一] 中的例題教學(xué),就挖掘出了教材中的訓(xùn)練空白,并沒有把教學(xué)簡單地停留在一種解答方法上,而是在學(xué)生預(yù)習(xí)的基礎(chǔ)上引導(dǎo)學(xué)生深入思考,在解決問題的過程中體會(huì)“從不同的角度去考慮問題,將得到不同的結(jié)果”的道理,從而學(xué)會(huì)多角度考慮問題,提高解決問題的能力。
2、找出知識(shí)聯(lián)系,大膽重組教材。數(shù)學(xué)知識(shí)具有一定的`結(jié)構(gòu),知識(shí)間存在著密切的聯(lián)系,我們?cè)诮虒W(xué)時(shí)不能只著眼于本節(jié)課的教學(xué),而應(yīng)找出知識(shí)間的內(nèi)在聯(lián)系,幫助學(xué)生建立一個(gè)較為完整知識(shí)系統(tǒng)。[片斷二]的表1僅幫助學(xué)生熟練掌握體積公式,此外無更多的教學(xué)價(jià)值,而重組后的表2不僅實(shí)現(xiàn)了編者的意圖,而且為“比例”的教學(xué)作了提前孕伏。走出了數(shù)學(xué)教學(xué)的“只見樹木,不見森林”的“點(diǎn)教學(xué)”的誤區(qū)。
學(xué)生獲得發(fā)展是用好教材的標(biāo)準(zhǔn),有的教師在教學(xué)中常常脫離教材,片面追求新課程的形式,而忽略了實(shí)質(zhì)——“一切為了每一位學(xué)生的發(fā)展”。每個(gè)學(xué)生在一節(jié)課的40分鐘里獲得最大發(fā)展應(yīng)作為我們用好教材組織教學(xué)的追求。本節(jié)課緊扣教材,“以本為本”,著眼學(xué)生的發(fā)展,無論是知識(shí)技能、過程與方法、數(shù)學(xué)思考還是情感態(tài)度價(jià)值觀,學(xué)生都獲得了最大發(fā)展。
今天教學(xué)了圓柱的體積,教學(xué)時(shí)由于學(xué)生手頭上早有學(xué)具——圓柱體積的演示器,因而學(xué)生很容易想到把圓柱轉(zhuǎn)化成長方體的方法,困難之處是學(xué)生在語言敘述時(shí)有些困難,比如沿著什么剪,平分成無數(shù)個(gè)什么圖形……(在形成方法后,讓學(xué)生互相說了兩遍)。
在實(shí)際教學(xué)時(shí)還是按部就班,先復(fù)習(xí)了長方體的體積計(jì)算方法,再由例4圖介入——先出示前面的長方體和正方體,讓生知道統(tǒng)一的算法后,再出示圓柱讓生猜測(cè)之間的聯(lián)系,繼而讓學(xué)生設(shè)法驗(yàn)證——
但是此處教材設(shè)計(jì)了引問“圓可以轉(zhuǎn)化成長方形計(jì)算面積,圓柱可以轉(zhuǎn)化成長方體計(jì)算體積嗎?”可是學(xué)生早以有了圓柱體的演示學(xué)具,顯得有些多余(此是教學(xué)的一大困惑)。實(shí)際教學(xué)時(shí)還是由圓過渡到圓柱與長方體的聯(lián)系上來,讓學(xué)生討論方法及之間的聯(lián)系。我又借助了flash課件,輔助認(rèn)識(shí)平均分成更多的份數(shù)越來越接近長方體……
有一點(diǎn),就是學(xué)生學(xué)具上其中的一塊又被平均分成了兩份,其中的一份移接到另一端,拼成一個(gè)更接近的長方體,而教材上的示意圖并沒有這樣的過程(以前的教材是和學(xué)具一樣的)。
我認(rèn)為教材的方法是很可取的,符合極限思想,因?yàn)榫褪遣辉倨骄蟹忠粔K后移接,如果我們均分的份數(shù)無限多時(shí),拼成的圖形也一定是一個(gè)長方體,何必多此一舉呢?
另外,我在網(wǎng)上的教案中看到了這樣的一個(gè)統(tǒng)一公式:直柱體的體積=底面積×高,覺得有些道理,教學(xué)時(shí)使用了,讓學(xué)生分別說出三種立體圖形的體積公式后,進(jìn)行發(fā)現(xiàn),得出此點(diǎn)(順?biāo)浦郏,但是接下來還進(jìn)行了一些提高性的應(yīng)用練習(xí),出示了三個(gè)直柱體(一個(gè)是直三棱柱,一個(gè)是直六棱柱,一個(gè)是底面是梯形的直柱體)告之底面積和高試它們的體積。不知這一教學(xué)環(huán)節(jié)是否可取?
《圓柱體積》教學(xué)反思13
圓柱的體積這一課的主要內(nèi)容是圓柱的體積公式的推導(dǎo)及其應(yīng)用。因?yàn)楣降耐茖?dǎo)過程是個(gè)難點(diǎn),因此在教學(xué)設(shè)計(jì)時(shí),讓學(xué)生自己動(dòng)手實(shí)踐、自主探索與合作交流,在實(shí)踐中體驗(yàn),幫助學(xué)生理解公式的來源,從而獲得知識(shí)。下面我從教學(xué)過程、教學(xué)策略、教學(xué)技能等方面談?wù)勛约旱囊恍┓此肌?/p>
圓柱的體積的導(dǎo)入,課本是先讓學(xué)生回憶“長方體、正方體的體積都可以用它們的底面積乘高來計(jì)算”,再接著馬上提問:“圓柱的'體積怎樣計(jì)算呢?”讓學(xué)生們猜一猜。猜想計(jì)算方法固然有好處,但要讓學(xué)生馬上做實(shí)驗(yàn)理解圓柱體積計(jì)算公式的推導(dǎo)過程,我覺得這樣教學(xué)引入,學(xué)生的思維跳躍得太快,銜接性不強(qiáng),不利于學(xué)生理解和掌握實(shí)驗(yàn)的用意,課堂效果就會(huì)明顯不佳。于是我設(shè)計(jì)時(shí)在回憶了長方體、正方體體積計(jì)算方法之后,接著復(fù)習(xí)一下圓面積計(jì)算公式的推導(dǎo)過程,這樣有助于學(xué)生猜想,并能更好地聯(lián)系舊知,思維過度自然、流暢,便于學(xué)生的思維走向正確的方向,不過應(yīng)該注意時(shí)間的控制,不能花費(fèi)太多的時(shí)間。
學(xué)生進(jìn)行數(shù)學(xué)探究時(shí),應(yīng)給予充分的思考空間,創(chuàng)設(shè)實(shí)踐操作的條件,營造出思考的環(huán)境氛圍。在推導(dǎo)圓柱體積公式過程時(shí),我讓學(xué)生經(jīng)歷先想-觀察-動(dòng)手操作的過程。把圓柱的底面分成若干份(例如,分成16等份),然后把圓柱切開,照課本上的圖拼起來,圓柱體就轉(zhuǎn)化成一個(gè)近似的長方體;接著讓學(xué)生小組交流長方體的長和寬與圓柱的各部分有什么關(guān)系?圓柱的體積怎樣計(jì)算的道理,從而推導(dǎo)出圓柱體積的計(jì)算公式。這樣學(xué)生親身參與操作,有了空間感覺的體驗(yàn),也有了充分的思考空間。
在教學(xué)中,我采用多媒體的直觀教具相結(jié)合的手段,在圓柱體積公式推導(dǎo)過程中指導(dǎo)學(xué)生充分利用手中的學(xué)具、教具,學(xué)生在興趣盎然中經(jīng)歷了自主探究、獨(dú)立思考、分析整理、合作交流、總結(jié)歸納等過程,發(fā)現(xiàn)了教學(xué)問題的存在,經(jīng)歷了知識(shí)產(chǎn)生的過程,理解和掌握了數(shù)學(xué)基本知識(shí),從而促進(jìn)了學(xué)生的思維發(fā)展。
當(dāng)然,本節(jié)課還存在很多不足之處,在學(xué)生們動(dòng)手操作時(shí),因?yàn)橄虢o學(xué)生充分的思考和探究的時(shí)間,以至于后來的練習(xí)時(shí)間不夠。在今后的教學(xué)中我要特別關(guān)注學(xué)生的學(xué)習(xí)過程,把握課堂教學(xué)時(shí)間,對(duì)教材進(jìn)行適當(dāng)?shù)募庸ぬ幚,提高課堂教學(xué)效率。
《圓柱體積》教學(xué)反思14
今天上了《圓柱的體積》一課,覺得比以前上得輕松,回到辦公室細(xì)細(xì)品味上課的過程,頗有幾分感受:
在本課中,當(dāng)學(xué)生面對(duì)新的問題情境—“圓柱的體積該怎么求?”時(shí),能從圓的面積公式的推導(dǎo),根據(jù)已有的知識(shí)作出 “轉(zhuǎn)化”的判斷。當(dāng)然,由于知識(shí)經(jīng)驗(yàn)的不足,表達(dá)得不是很清晰。但學(xué)生的這些都是有價(jià)值的。這些“猜想”閃爍著學(xué)生智慧的火花,折射出學(xué)生的創(chuàng)造精神。在此基礎(chǔ)上,讓學(xué)生以小組合作方式,利用已切開的圓柱體教具進(jìn)行驗(yàn)證,在討論聲中,學(xué)生獲得了真知?梢,教師要保護(hù)學(xué)生的創(chuàng)造熱情并給以科學(xué)探究方法的引導(dǎo),以發(fā)展學(xué)生的創(chuàng)造性。在這點(diǎn)上,我對(duì)學(xué)生的探究精神給予了充分的肯定。這節(jié)課再次讓我知道了,相信學(xué)生的創(chuàng)造力是我們?cè)O(shè)計(jì)教法的前提。
在引導(dǎo)學(xué)生解決“粉筆的體積”等這個(gè)問題時(shí),課堂上有學(xué)生把它當(dāng)作圓柱體積來求,提出:“誤差這么小,是可行的!倍夷俏粚W(xué)生要求的僅是一個(gè)大約的數(shù)值,所以用這種方法可以。但這種計(jì)算粉筆體積的方法可行嗎?如果我不提出疑義,也不加以說明,就會(huì)給學(xué)生造成“圓臺(tái)的體積可以用這兩種方法來計(jì)算”的錯(cuò)誤認(rèn)識(shí),對(duì)學(xué)生的后續(xù)學(xué)習(xí)會(huì)造成一些不利的'影響。我就這個(gè)問題引導(dǎo)學(xué)生進(jìn)一步探索,使學(xué)生發(fā)現(xiàn)平面圖形中的一些規(guī)律照搬到立體圖形中有時(shí)會(huì)行不通,懂得知識(shí)并非一成不變的,有其發(fā)展性,初步理解三維空間物體與二維平面圖形的聯(lián)系與區(qū)別,為進(jìn)一步學(xué)習(xí)積累經(jīng)驗(yàn)。學(xué)生在探索過程中,雖不能很快獲得結(jié)論性的知識(shí),但卻嘗試了科學(xué)探究的方法,形成良好的思維品質(zhì),增進(jìn)了情感體驗(yàn)。這樣,既保護(hù)了學(xué)生的創(chuàng)造性,又保證了教學(xué)內(nèi)容的科學(xué)性,就學(xué)生的發(fā)展而言,誰能說讓學(xué)生經(jīng)歷這樣探究的過程,不也比獲得現(xiàn)成的結(jié)論更富有積極的意義?
《圓柱體積》教學(xué)反思15
這部分知識(shí)是學(xué)生在有了圓柱、圓和長方體的相關(guān)知識(shí)基礎(chǔ)上進(jìn)行教學(xué)的。在知識(shí)和技能上,通過對(duì)圓柱體積的具體研究,理解圓柱體積公式的推導(dǎo)過程,會(huì)計(jì)算圓柱的體積;在方法的選擇上,抓住新舊知識(shí)的聯(lián)系,通過想象、實(shí)際操作,從經(jīng)歷和體驗(yàn)中思考,培養(yǎng)學(xué)生科學(xué)的思維方法;貼近學(xué)生生活實(shí)際,創(chuàng)設(shè)情境,解決問題,體現(xiàn)數(shù)學(xué)知識(shí)“ 從生活中來到生活中去” 的理念,激發(fā)學(xué)生的學(xué)習(xí)興趣和對(duì)科學(xué)知識(shí)的求知欲,使學(xué)生樂于探索,善于探究。
一、讓學(xué)生在現(xiàn)實(shí)情境中體驗(yàn)和理解數(shù)學(xué)
在本節(jié)課中,我給學(xué)生創(chuàng)設(shè)了生活情景(裝在杯子中的水的體積你會(huì)求嗎?圓柱形橡皮泥的體積你會(huì)求嗎?)學(xué)生聽到教師提的問題多在身邊的生活中,頗感興趣。學(xué)生經(jīng)過思考、討論、交流,找到了解決的方法。而且此環(huán)節(jié)還自然滲透了圓柱(新問題)和長方體(已知)的知識(shí)聯(lián)系。在此基礎(chǔ)上教師又進(jìn)一步從實(shí)際需要提出問題:如果要求某些建筑物中圓柱形柱子的'體積,或是求壓路機(jī)滾筒的體積,能用剛才同學(xué)們想出來的辦法嗎?這一問題情境的創(chuàng)設(shè),激發(fā)學(xué)生從問題中思考尋求一種更廣泛的方法來解決圓柱體積的欲望。
二、鼓勵(lì)學(xué)生獨(dú)立思考,引導(dǎo)學(xué)生自主探索、合作交流
在本節(jié)課提示課題后,我先引導(dǎo)學(xué)生獨(dú)立思考要解決圓柱的體積問題,可以怎么辦?學(xué)生通過思考很快確定打算把圓柱轉(zhuǎn)化成長方體。那么怎樣來切割呢?此時(shí)采用小組討論交流的形式。同學(xué)們有了圓面積計(jì)算公式推導(dǎo)的經(jīng)驗(yàn),經(jīng)過討論得出:把圓柱的底面沿直徑分成若干等份。在此基礎(chǔ)上,小組拿出學(xué)具進(jìn)行了動(dòng)手操作,拼成了一個(gè)近似的長方體。通過實(shí)驗(yàn)、操作、自主探究,實(shí)現(xiàn)學(xué)生主體地位、學(xué)習(xí)方式的轉(zhuǎn)變,有效地培養(yǎng)學(xué)生的創(chuàng)新意識(shí)。的思想。
三、練習(xí)時(shí),要形式多樣,層層遞進(jìn)
例題“ 練一練” 中的題目都比較淺顯,學(xué)生還能容易掌握,但遇到多轉(zhuǎn)幾個(gè)彎的題目就束手無策了。所以,為了讓學(xué)生能熟練地掌握計(jì)算圓柱的體積,教師在設(shè)計(jì)練習(xí)時(shí)要多動(dòng)腦,花心思去考慮怎樣才能讓學(xué)生用最短的時(shí)間完成不同類型的題目。通過反思,我概括出五種類型:
1 .已知圓柱底面積(s )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=sh
2 .已知圓柱底面半徑(r )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=πr?h 。
3 .已知圓柱底面直徑(d )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(d/2)?h 。
4 .已知圓柱底面周長(c )和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(c÷π÷2)?h 。
5 .已知圓柱側(cè)面積(s 側(cè))和高(h ),計(jì)算圓柱體積可以應(yīng)用這一公式:V=π(s 側(cè)÷h÷π÷2)?h 。
在鞏固練習(xí)中,只要從這五種類型去考慮,做到面面俱到,逐層深入,由易到難,學(xué)生才能真正掌握好計(jì)算圓柱體積的方法。
【《圓柱體積》教學(xué)反思】相關(guān)文章:
《圓柱的體積》教學(xué)反思10-26
《圓柱的體積》教學(xué)反思06-09
圓柱的體積的教學(xué)反思02-27
圓柱的體積教學(xué)反思02-18
圓柱的體積教學(xué)反思范文10-25
(精品)圓柱的體積教學(xué)反思07-09
《圓柱體積》教學(xué)反思04-20
圓柱的體積教學(xué)反思15篇06-13
《圓柱的體積》教學(xué)反思15篇02-13