久久538,国产精品第一区在线观看,特黄又色牲交视频免费…,亚洲欧美综合在线观看,一区二区三区毛片免费,欧美黄网站免费观看,女人18**毛片一级毛片

初中數(shù)學(xué)優(yōu)秀教案

時間:2024-10-19 12:34:46 教案 我要投稿
  • 相關(guān)推薦

初中數(shù)學(xué)優(yōu)秀教案

  在教學(xué)工作者開展教學(xué)活動前,有必要進行細(xì)致的教案準(zhǔn)備工作,教案是教學(xué)活動的依據(jù),有著重要的地位。如何把教案做到重點突出呢?下面是小編為大家收集的初中數(shù)學(xué)優(yōu)秀教案,歡迎閱讀,希望大家能夠喜歡。

初中數(shù)學(xué)優(yōu)秀教案

初中數(shù)學(xué)優(yōu)秀教案1

  教學(xué)目標(biāo):

  1、初步理解垂直與平行是同一平面內(nèi)兩直線的特殊位置關(guān)系,初步認(rèn)識垂線和平行線。

  2、在“演示操作驗證解釋應(yīng)用”的過程中,發(fā)展學(xué)生的空間觀念,滲透猜想、與驗證的數(shù)學(xué)思想方法。

  教學(xué)重點、難點

  正確理解“相交”、“互相平行”、“互相垂直”等概念,發(fā)展學(xué)生的空間想象力。

  教學(xué)過程:

  一、平面內(nèi)兩直線位置關(guān)系

  1、操作:

  請每位同學(xué)在一張紙上畫兩條直線,這兩條直線的位置關(guān)系會出現(xiàn)哪些情況?

  2、分類:根據(jù)學(xué)生想象,出示下圖(網(wǎng)格):

  師:老師課前也繪制了這樣6幅圖,想一想,按兩條直線的不同位置關(guān)系,你可以分成哪幾類?說說你的.分類依據(jù)。

  3、討論交流,揭示平面內(nèi)兩條直線的位置關(guān)系。

  小結(jié):

  兩條直線,除了“相交”和“不相交”,還可能存在其他的位置關(guān)系嗎?

  板書:

  相交

  兩條直線的位置關(guān)系

  不相交

  二、探究一:垂直

  1、平面內(nèi)兩直線相交構(gòu)成的4個角的特點。

  師:首先來研究平面內(nèi)兩條直線“相交”這一情況。

  師:平面內(nèi)直線a和直線b相交與點O,已知1=60,誰能馬上求出2、3、4的度數(shù)?你是怎么想的?

  2、平面內(nèi)兩直線相交的特殊情況。

  提問:這4個角的度數(shù)有什么特點?固定點O,旋轉(zhuǎn)后,情況還是一樣嗎?

 。ㄐD(zhuǎn)至垂直)

  師:現(xiàn)在兩條直線相交成直角了。繼續(xù)旋轉(zhuǎn)呢?

  除了相交成直角以外,其余的情況,都是任意相交的。

  板書: 任意相交

  相交

  平面內(nèi)兩條直線的位置關(guān)系 相交成直角

  不相交

  3、練習(xí):

  下列圖形中哪兩條直線相交成直角。

  ○1 ○2 ○3

  4、揭示概念。(媒體出示)

  板書: 任意相交

  相交

  平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直

  不相交

  5、平面圖形中的垂直現(xiàn)象。

  下面圖形中哪些角是直角?在圖上用直角記號標(biāo)出。哪些線段互相垂直?用垂直符號表示。

  ○1 ○2 ○3

  記作: 記作: 記作:

  6、動手操作。

  三、探究二:平行

  1、提問:長方形中,如果把相對的兩條邊無限延長,是否會在某一點相交?

  2、揭示概念

  板書: 任意相交

  相交

  平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直

  不相交 平行

  3、平面圖中的平行現(xiàn)象

  4、練習(xí)

 。1)說說下列哪些直線互相垂直?哪些互相平行?

  將圖2改為:

  提問:e和f還平行嗎?

  將圖2改為:

  當(dāng)角1等于角2時,e和f還平行嗎?

  (2)滲透“同一”平面觀念

  長方體中,這兩條棱相交嗎?那么他們平行嗎?

  板書: 任意相交

  相交

  同一平面內(nèi)兩條直線的位置關(guān)系 相交成直角 垂直

  不相交 平行

  四、生活中的平行與垂直

  1、舉例:生活中,你有沒有發(fā)現(xiàn)“垂直與平行”的現(xiàn)象?

  2、提問:為什么這些地方要設(shè)計成“垂直”或者“平行”?

  五、課堂總結(jié)

初中數(shù)學(xué)優(yōu)秀教案2

  教學(xué)目標(biāo):

 。、通過學(xué)生自己動手畫圖,讓學(xué)生體會軸對稱、平移和旋轉(zhuǎn)三者之間的聯(lián)系,培養(yǎng)學(xué)生探究的精神。

 。、讓學(xué)生深刻體會對稱思想的重要性,提高應(yīng)用能力。

  教學(xué)過程:

  一、向?qū)W生展示生活中美麗的對稱圖形,并指出其是怎樣的對稱?(展示課件)

  二、探究規(guī)律:

  課前完成書本第6頁:做一做、和第14頁:做一做。(展示課件)

  軸對稱、平移和旋轉(zhuǎn)是圖形變換的三種最基本的形式。表面上它們是三件不相干的事,可經(jīng)過反復(fù)軸對稱,我們發(fā)現(xiàn):

  規(guī)律1:當(dāng)對稱軸兩兩互相平行的時候,經(jīng)過偶數(shù)次的軸對稱變換相當(dāng)于實現(xiàn)一次偉大的平移變換,平移的方向與對稱軸距離矢量和的方向一致,平移的距離恰好是對稱軸距離的代數(shù)和的2倍;

  若對稱軸兩兩相交于同一點,經(jīng)過偶數(shù)次的軸對稱變換相當(dāng)于實現(xiàn)一次偉大的旋轉(zhuǎn)變換,旋轉(zhuǎn)中心就是對稱軸的交點,旋轉(zhuǎn)方向就是對稱軸交角矢量和的方向一致,旋轉(zhuǎn)的角度恰好是對稱軸交角的代數(shù)和的2倍。(難點)

  規(guī)律2:一些圖形經(jīng)過軸對稱、平移、旋轉(zhuǎn)變換后的,圖形的形狀、大小與原圖完全一樣。這里的“完全一樣”是一個非常好用的性質(zhì),因為它意示著:對應(yīng)線段、對應(yīng)角、對應(yīng)圖形的周長、面積相等。

  三、應(yīng)用規(guī)律解題:(重點)(展示課件)

  例1、已知:如圖,點A和點D關(guān)于直線MN對稱,點B和點C也關(guān)于直線MN對稱,AC與BD相交于點O,且點0在直線MN上,請你寫出盡可能多的結(jié)論。(至少寫出8條)

  例2、如圖,在一個長為200米,寬為150米的長方形公園里,擬建三條寬都為C米的人行道,其余部分為綠化帶,試問,綠化帶面積是多少平方米?(列式即可)

  例3、已知正方形ABCD和正方形AEFG有一個公共點A,點D、E分別在線段AD、 AB上。

 。ǎ玻┤魧⒄叫危粒牛疲抢@點A按順時針方向旋轉(zhuǎn),連結(jié)DG,在旋轉(zhuǎn)的過程中,你能否找到一條線段的長與線段DG的長始終相等。并以圖2為例說明理由。

  解答:連結(jié)BE,

  因為在正方形ABCD和正方形AEFG中,

  AD=AB; AG=AE;

  所以在旋轉(zhuǎn)過程中,

  線段AD對應(yīng)線段AB;

  線段AG對應(yīng)線段AE;

  則線段DG對應(yīng)線段BE;

  因此:BE=DG。

  練習(xí)1、如圖所示,請你用三種方法,把左邊的小正方形分別移到右邊的三個圖形中,使它成為軸對稱圖形。

  練習(xí)2、如圖所示,已知AE∥DF,BE∥CF,AD∥BC,AD=BC且AB⊥BC,AB=3,AD=4。求多邊形AEBCFD的面積。

  練習(xí)3、如圖,將一個扇形(∠AOB=90°)平移到一個長方形上,恰好OCDE為正方形,若正方形邊長為1,則圖中陰影部分的面積為多少?

  練習(xí)4、如圖所示,點O是邊長為a的正方形ABCD的中心,將一塊半經(jīng)足夠長,圓心角∠EOF=90°的扇形紙板的圓心放在點O處,并將紙板繞點O旋轉(zhuǎn)。求正方形ABCD的邊被紙板覆蓋部分的長度和被紙板覆蓋部分的面積。

  四、小結(jié):

  三種圖形變換的`聯(lián)系和兩個規(guī)律及其應(yīng)用。

  五、作業(yè):

 。、請同學(xué)們設(shè)計符合下列要求的圖形

  (1) 使它是中心對稱圖形,又是軸對稱圖形;

 。ǎ玻 使它是中心對稱圖形,但不是軸對稱圖形;

  2、預(yù)習(xí)下一章內(nèi)容,嘗試用對稱的思想分析平行四邊形的性質(zhì)。

  六、課后反思:

  本節(jié)教學(xué)前,經(jīng)備課組老師建議,取消了規(guī)律1的探索,補充了下面的一道開放式探索題:在正方形的瓷磚面上畫花紋,要求將磚面分成4部分,每部分形狀、大小完全一樣,請作出你的設(shè)計。 學(xué)生設(shè)計出12種的方案,并用對稱的思想加以歸類總結(jié),取得了很好的效果。但作為一堂“指導(dǎo)----自主----合作”的教學(xué)模式,老師安排的內(nèi)容是否太多,學(xué)生自主學(xué)習(xí)放到課前,該如何監(jiān)控等問題還有待進一步探索。

初中數(shù)學(xué)優(yōu)秀教案3

  學(xué)習(xí)目標(biāo):

  1、進一步理解平均數(shù)、中位數(shù)和眾數(shù)等統(tǒng)計量的統(tǒng)計意義。

  2、會計算加權(quán)平均數(shù),理解“權(quán)”的意義,能選擇適當(dāng)?shù)慕y(tǒng)計量表示數(shù)據(jù)的集中趨勢。

  3、會計算極差和方差,理解它們的統(tǒng)計意義,會用它們表示數(shù)據(jù)的波動情況。

  4、會用樣本平均數(shù)、方差估計總體的平均數(shù)、方差,進一步感受抽樣的必要性,體會用樣本估計總體的思想。

  一、知識點回顧

  1、數(shù)學(xué)期末總評成績由作業(yè)分?jǐn)?shù),課堂參與分?jǐn)?shù),期考分?jǐn)?shù)三部分組成,并按3:3:4的比例確定。已知小明的期考80分,作業(yè)90分,課堂參與85分,則他的總評成績?yōu)開_______。

  2、樣本1、2、3、0、1的平均數(shù)與中位數(shù)之和等于___.

  3、一組數(shù)據(jù)5,-2,3,x,3,-2,若每個數(shù)據(jù)都是這組數(shù)據(jù)的眾數(shù),則這組數(shù)據(jù)的平均數(shù)是.

  4、數(shù)據(jù)1,6,3,9,8的極差是

  5、已知一個樣本:1,3,5,x,2,它的平均數(shù)為3,則這個樣本的方差是。

  二、專題練習(xí)

  1、方程思想:

  例:某次考試A、B、C、D、E這5名學(xué)生的平均分為62分,若學(xué)生A除外,其余學(xué)生的平均得分為60分,那么學(xué)生A的得分是_____________.

  點撥:本題可以用統(tǒng)計學(xué)知識和方程組相結(jié)合來解決。

  同類題連接:一班級組織一批學(xué)生去春游,預(yù)計共需費用120元,后來又有2人參加進來,總費用不變,于是每人可以少分?jǐn)?元,設(shè)原來參加春游的學(xué)生x人。可列方程:

  2、分類討論法:

  例:汶川大地震牽動每個人的心,一方有難,八方支援,5位衢州籍在外打工人員也捐款獻(xiàn)愛心。已知5人平均捐款560元(每人捐款數(shù)額均為百元的整數(shù)倍),捐款數(shù)額最少的也捐了200元,最多的(只有1人)捐了800元,其中一人捐600元,600元恰好是5人捐款數(shù)額的中位數(shù),那么其余兩人的捐款數(shù)額分別是___________;

  點撥:做題過程中要注意滿足的條件。

  同類題連接:數(shù)據(jù)-1 , 3 , 0 , x的極差是5 ,則x =_____.

  3、平均數(shù)、中位數(shù)、眾數(shù)在實際問題中的應(yīng)用

  例:某班50人右眼視力檢查結(jié)果如下表所示:

  視力0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 1.0 1.2 1.5

  人數(shù)2 2 2 3 3 4 5 6 7 11 5

  求該班學(xué)生右眼視力的`平均數(shù)、眾數(shù)與中位數(shù).發(fā)表一下自己的看法。

  4、方差在實際問題中的應(yīng)用

  例:甲、乙兩名射擊運動員在相同條件下各射靶5次,各次命中的環(huán)數(shù)如下:

  甲:5 8 8 9 10

  乙:9 6 10 5 10

  (1)分別計算每人的平均成績;

  (2)求出每組數(shù)據(jù)的方差;

  (3)誰的射擊成績比較穩(wěn)定?

  三、知識點回顧

  1、平均數(shù):

  練習(xí):在一次英語口試中,已知50分1人、60分2人、70分5人、90分5人、100分1人,其余為84分。已知該班平均成績?yōu)?0分,問該班有多少人?

  2、中位數(shù)和眾數(shù)

  練習(xí):1.一組數(shù)據(jù)23、27、20、18、X、12,它的中位數(shù)是21,則X的值是.

  2.如果在一組數(shù)據(jù)中,23、25、28、22出現(xiàn)的次數(shù)依次為2、5、3、4次,并且沒有其他的數(shù)據(jù),則這組數(shù)據(jù)的眾數(shù)和中位數(shù)分別是( )

  A.24、25 B.23、24 C.25、25 D.23、25

  3.在一次環(huán)保知識競賽中,某班50名學(xué)生成績?nèi)缦卤硭荆?/p>

  得分50 60 70 80 90 100 110 120

  人數(shù)2 3 6 14 15 5 4 1

  分別求出這些學(xué)生成績的眾數(shù)、中位數(shù)和平均數(shù).

  3.極差和方差

  練習(xí):1.一組數(shù)據(jù)X 、X …X的極差是8,則另一組數(shù)據(jù)2X +1、2X +1…,2X +1的極差是( )

  A. 8 B.16 C.9 D.17

  2.如果樣本方差,

  那么這個樣本的平均數(shù)為.樣本容量為.

  四、自主探究

  1、已知:1、2、3、4、5、這五個數(shù)的平均數(shù)是3,方差是2.

  則:101、102、103、104、105、的平均數(shù)是,方差是。

  2、4、6、8、10、的平均數(shù)是,方差是。

  你會發(fā)現(xiàn)什么規(guī)律?

  2、應(yīng)用上面的規(guī)律填空:

  若n個數(shù)據(jù)x1x2……xn的平均數(shù)為m,方差為w。

  (1)n個新數(shù)據(jù)x1+100,x2+100, …… xn+100的平均數(shù)是,方差為。

  (2)n個新數(shù)據(jù)5x1,5x2, ……5xn的平均數(shù),方差為。

  五、學(xué)后反思:

  xxx

初中數(shù)學(xué)優(yōu)秀教案4

  4.2.(一)

  教材分析:

  本節(jié)課是緊接《平行四邊形的性質(zhì)》一節(jié),其探究的主要內(nèi)容是“兩條對角線互相平分的四邊形是平行四邊形”,以及“一組對邊平行且相等的四邊形是平行四邊形”這兩種判別方法。它是在學(xué)生掌握了平行線、三角形全等及簡單圖形的平移和旋轉(zhuǎn)、平行四邊形的定義、性質(zhì)等基礎(chǔ)性知識上學(xué)習(xí)的。在教學(xué)內(nèi)容上起著承上啟下的作用。首先,在探索方式上運用了學(xué)習(xí)機“圖形計算器”的度量、旋轉(zhuǎn)、平移等方法、其次、在探究判別條件的合理性上和運用判別條件時除用到了全等三角形的相關(guān)知識,還可以通過直觀體驗的方法來獲取信息。其次,平行四邊形的判別條件是研究特殊的平行四邊形的基礎(chǔ);再有,平行四邊形判別條件的探究模式從方法上為)(研究特殊的平行四邊形奠定了基礎(chǔ)。并且,本節(jié)內(nèi)容還是學(xué)生運用化歸思想的良好素材。教材從學(xué)生年齡特征、文化知識的實際水平出發(fā),先讓學(xué)生動手做,動腦思考,然后與同伴交流、利用學(xué)習(xí)機“圖形計算器”探索、總結(jié)歸納,升華得出平行四邊形的判別方法,再用這些方法去對四邊形是否是平行四邊形進行判別。這樣的安排使抽象的推理讓學(xué)生更易于接受,并能在整個教學(xué)過程中真正享受到探索的樂趣。

  教學(xué)目標(biāo):

  1.經(jīng)歷并了解平行四邊形判別方法的探索過程,使學(xué)生逐步掌握說理的基本方法。

  探索并掌握平行四邊形的兩種判別條件,能根據(jù)判別方法進行相關(guān)的應(yīng)用。

  2.在探索過程中發(fā)展學(xué)生的合理推理意識、主動探究的習(xí)慣。

  體驗數(shù)學(xué)活動來源于生活又服務(wù)于生活,提高學(xué)生的學(xué)習(xí)興趣。

  3.在操作學(xué)習(xí)機的“圖形計算器”活動過程中,加深師生的情感。培養(yǎng)學(xué)生的觀察能力,并提高學(xué)生的學(xué)習(xí)興趣。在學(xué)習(xí)過程中,來體會平行四邊形的圖形美和內(nèi)在美。同時使“圖形計算器”真正成為學(xué)生的學(xué)具。

  教學(xué)重點:探索并掌握平行四邊形的判別條件。(一組對邊平行且相等的四邊形是平行四邊形;兩條對角線互相平分的四邊形是平行四邊形)。

  教學(xué)難點:經(jīng)歷平行四邊形判別條件的探索過程,發(fā)展學(xué)生的合情推理意識、主動探索的習(xí)慣,逐步掌握說理的基本方法。

  教學(xué)媒體設(shè)計:

  為了實現(xiàn)教學(xué)目標(biāo)、優(yōu)化教學(xué)過程、突破教學(xué)難點、充分調(diào)動學(xué)生的`各種感官、吸引注意力,課堂上主要采用諾亞舟學(xué)習(xí)機的“圖形計算器”進行輔助教學(xué),通過大屏幕媒體展示教學(xué)和學(xué)生對“圖形計算器”充分利用,使教學(xué)過程與知識發(fā)展過程和思維過程三者同步,分別在創(chuàng)設(shè)情境;觀察、探索;理順、歸納;運用、提高;回顧、反思;布置作業(yè)環(huán)節(jié)都將發(fā)揮“圖形計算器”的實戰(zhàn)功能、讓學(xué)生真正做到課上聽懂、理解透徹。將學(xué)生的課堂練習(xí)成果進行快速展示,從而節(jié)約時間,提高課堂效率。

  教學(xué)過程設(shè)計:(t—教師,s—學(xué)生)

  問題與情境師生行為設(shè)計意圖

  活動板塊1

  前面我們已經(jīng)學(xué)習(xí)了平行四邊形概念和性質(zhì),我們來復(fù)習(xí):

 。1)平行四邊形概念。

 。2)平行四邊形性質(zhì)。

  (3)如果我們自己作平行四邊形,你是如何說明理由的?

  進而得出需進行平行四邊形判別條件的探究。

  先由學(xué)生根據(jù)自主做圖的基礎(chǔ)上,進行猜想,具備什么條件的四邊形是平行四邊形,將猜想記錄到練習(xí)本上。利用學(xué)習(xí)機的“圖形計算器”將你的猜想進行驗證。

  活動板塊2

  在學(xué)生合作探究基礎(chǔ)上,對小組活動及時評價、引導(dǎo)。

  同時觀察是否有小組已經(jīng)經(jīng)過猜想、通過實驗驗證的方法獲得了平行四邊形判別條件。

  適時地將學(xué)生的探究方向指引到通過平行四邊形的性質(zhì)來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。

  適時地選出一小組成員在臺前利用教師學(xué)習(xí)機的“圖形計算器”通過大屏幕演示小組成果…

  得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。

  活動板塊3

  學(xué)生繼續(xù)活動,探究平行四邊形判別的其他方法。

  適時地將學(xué)生的探究方向指引到通過平行四邊形的性質(zhì)來反向探究平行四邊形判別條件,進而得出平行四邊形判別方法。

  適時地選出一小組成員在臺前利用教師學(xué)習(xí)機的“圖形計算器”通過大屏幕演示小組成果…

  得出平行四邊形判別方法:兩條對角線互相平分的四邊形是平行四邊形或(一組對邊平行且相等的四邊形是平行四邊形)。

  活動板塊4

  通過小結(jié)后,借助大屏幕展示學(xué)習(xí)機的“圖形計算器”中預(yù)先保存的練習(xí)題。

  活動板塊5

  小結(jié)及學(xué)生談感受、體會、特別是對學(xué)習(xí)機的使用情況談體會和認(rèn)識。

  活動板塊6

  課后思考題:(將問題的探究記錄在學(xué)習(xí)機的“圖形計算器”中保存)

  1.平行四邊形abcd中,在對角線所在直線上取ae、cf,使ae=cf,連接be、df,試說明:be=df。

  2.利用學(xué)習(xí)機的“圖形計算器”制作一組以平行四邊形為基本圖案的美麗圖形。

  t:提出復(fù)習(xí)概念和性質(zhì)。

  s:思考,回答結(jié)合一起

  復(fù)習(xí)。

  s:思考、作圖、自主參與交流。

  t:引導(dǎo)、合作,對小組活動及時評價。

  t:注意s猜想、驗證過程中出現(xiàn)哪些問題,他們想如何解決所遇到的問題。

  t:引導(dǎo)發(fā)展s的探究意識和合作中團結(jié)解決所遇到的各種問題。

  t:引導(dǎo)和補充。關(guān)注學(xué)生是否交流方法,互動學(xué)習(xí)。能否發(fā)現(xiàn)問題,研究并解決問題

  s:互動學(xué)習(xí),提出論證方法。

  t:引導(dǎo)、合作,對回答問題及時評價。

  s:通過對學(xué)具學(xué)習(xí)機的“圖形計算器”的自主探求,獲得平行四邊形判別方法。

  s:小組成員合作,其他學(xué)生觀察、思考得出探究的正確方向。

  s:互動學(xué)習(xí),提出論證方法。

  t:引導(dǎo)、合作,對回答問題及時評價。

  t:關(guān)注學(xué)生是否交流方法,互動學(xué)習(xí)。能否發(fā)現(xiàn)問題,研究并解決問題

  s:小組成員合作,其他學(xué)生觀察、思考得出探究的正確方向。

  t:根據(jù)授課情況,板演解題過程,或?qū)W生口述解題過程。s:板演或口述。

  t:演示引例,解決具體問題中感受應(yīng)用的價值。

  s:暢所欲言

  t:進行補充,總結(jié)。

  s:小組一名同學(xué)記錄問題題干,另一名同學(xué)在學(xué)習(xí)機的“圖形計算器”上記錄下圖形。課后將問題的探究記錄在學(xué)習(xí)機的“圖形計算器”中保存

  立足于舊知識的基礎(chǔ)上,引導(dǎo)學(xué)生的注意力。

  在情境引入中充分使用學(xué)習(xí)機“圖形計算器”來促進學(xué)生學(xué)習(xí)過程。

  為全體學(xué)生提供借助“圖形計算器”為基礎(chǔ)平臺,使全體學(xué)生都有信心學(xué)習(xí)數(shù)學(xué)知識,調(diào)動學(xué)生積極性,主動地參與到課程過程中來,樹立學(xué)習(xí)的信心。為教學(xué)目標(biāo)1服務(wù)。

  通過全體學(xué)生借助“圖形計算器”,獲得直觀的平行四邊形判別方法的印象,通過小組間的合作探究,更容易將所獲得的信息結(jié)論加以認(rèn)識、記憶。

  學(xué)生在學(xué)習(xí)過程中,對學(xué)習(xí)機的“圖形計算器”的自主發(fā)現(xiàn)時,大膽創(chuàng)新,想解決問題。教師起引導(dǎo)者作用,引入符號語言,使學(xué)生輕松愉悅地接受并獲取經(jīng)驗為今后學(xué)習(xí)特殊四邊形打基礎(chǔ)。達(dá)成目標(biāo)1。

  直覺思維能力是數(shù)學(xué)注意培養(yǎng)發(fā)展的能力之一,它有利于人的探究能力的成長和創(chuàng)新精神培養(yǎng)。

  提引問題時教師起組織者作用,使學(xué)生感受師生合作、生生合作的愉快,不斷的對學(xué)具學(xué)習(xí)機的“圖形計算器”的自主探求,獲得數(shù)學(xué)發(fā)展,激發(fā)學(xué)生的學(xué)習(xí)熱情,調(diào)動學(xué)生學(xué)習(xí)自主性。共同發(fā)展,達(dá)成目標(biāo)1.2。

  在學(xué)生最近的知識發(fā)展區(qū)建立新的生長點,解釋應(yīng)用與拓展的學(xué)習(xí)主題,在本活動中得以體現(xiàn)。達(dá)成教學(xué)目標(biāo)2。

  創(chuàng)設(shè)一個平等和諧的暢談空間,調(diào)動學(xué)生的積極性,養(yǎng)成良好的總結(jié)習(xí)慣,善于從能力,情感、態(tài)度等方面關(guān)注學(xué)生對課堂整體感受,發(fā)現(xiàn)集體的力量是無窮的,培養(yǎng)集體主義精神。提供一發(fā)展平臺,給學(xué)生留有學(xué)習(xí)探索的空間。

  展示提出問題,為下節(jié)課的學(xué)習(xí)提出預(yù)想。并利用“圖形計算器”探求問題,帶來直觀體驗,同時培養(yǎng)學(xué)生的觀察能力,并提高學(xué)生的學(xué)習(xí)興趣。

初中數(shù)學(xué)優(yōu)秀教案5

  教學(xué)目標(biāo)

  知識

  技能 1.通過觀察實驗,使學(xué)生了解圓心角的概念.

  2.掌握在同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應(yīng)的其余各組量也相等,以及它們在解題中的應(yīng)用.

  過程

  方法 通過復(fù)習(xí)旋轉(zhuǎn)的知識,產(chǎn)生圓心角的概念,然后用圓心角和旋轉(zhuǎn)的知識探索在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,那么它們所對應(yīng)的其余各組量都分別相等,最后應(yīng)用它解決一些具體問題,進一步理解和體會研究幾何圖形的各種方法.

  情感

  態(tài)度 激發(fā)學(xué)生觀察、探究、發(fā)現(xiàn)數(shù)學(xué)問題的興趣和欲望.

  教學(xué)重點

  在同圓或等圓中,相等的圓心角所對的弧相等,所對弦也相等及其兩個推論和它們的應(yīng)用.

  教學(xué)難點

  探索定理和推導(dǎo)及其應(yīng)用.

  教學(xué)過程設(shè)計

  教學(xué)程序及教學(xué)內(nèi)容 師生行為 設(shè)計意圖

  一、導(dǎo)語這節(jié)課我們繼續(xù)研究圓的性質(zhì),請同學(xué)們完成下題.

  1.已知△OAB,如圖所示,作出繞O點旋轉(zhuǎn)30、45、60的圖形.

  2.圓是中心對稱圖形嗎?將圓旋轉(zhuǎn)任意角度后會出現(xiàn)什么情況?我們學(xué)過的幾何圖形中既是中心對稱圖形,又是軸對稱圖形的是?

  二、探究新知

  (一)、圓心角定義

  在紙上任意畫一個圓,任意畫出兩條不在同一條直線上的半徑,構(gòu)成一個角,這樣的角就是圓心角.如圖所示,AOB的頂點在圓心,像這樣,頂點在圓心的角叫做圓心角.

  (二)、圓心角、弧、弦之間的關(guān)系定理

  1.按下列要求作圖并回答問題:

  如圖所示的⊙O中,分別作相等的圓心角AOB和AOB將圓心角AOB繞圓心O旋轉(zhuǎn)到A‵OB‵的位置,你能發(fā)現(xiàn)哪些等量關(guān)系?為什么?

  得到: 在同一個圓中,相等的圓心角所對的弧相等,所對的弦相等.

  2.在等圓中相等的圓心角是否也有所對的弧相等,所對的`弦相等呢?

  綜合1、2,我們可以得到關(guān)于圓心角、弧、弦之間的關(guān)系定理:

  在同圓或等圓中,相等的圓心角所對的弧相等,所對的弦也相等.

  3.分析定理:去掉“在同圓或等圓中”這個條件,行嗎?

  4.定理拓展:

  ○1在同圓或等圓中,如果兩條弧相等,那么它們所對的圓心角,所對的弦也分別相等嗎?

  ○2在同圓或等圓中,如果兩條弦相等,那么它們所對的圓心角,所對的弧也分別相等嗎?綜上得到

  在同圓或等圓中,相等的弧所對的圓心角相等,所對的弦也相等.

  在同圓或等圓中,相等的弦所對的弧相等,所對的圓心角也相等.

  綜上所述,同圓或等圓中,兩個圓心角、兩條弧、兩條弦中有一組量相等,就可以推出它們所對應(yīng)的其余各組量也相等.

 。ㄈ、定理應(yīng)用

  1.課本例1

  2.如圖,在⊙O中,AB、CD是兩條弦,OEAB,OFCD,垂足分別為EF.

  (1)如果AOB=COD,那么OE與OF的大小有什么關(guān)系?為什么?

  (2)如果OE=OF,那么 與 的大小有什么關(guān)系?AB與CD的大小有什么關(guān)系?為什么?AOB與COD呢?

  三、課堂訓(xùn)練

  完成課本83頁練習(xí)

  補充:如圖3和圖4,MN是⊙O的直徑,弦AB、CD相交于MN上的一點P,APM=CPM.

  (1)由以上條件,你認(rèn)為AB和CD大小關(guān)系是什么,請說明理由.

 。2)若交點P在⊙O的外部,上述結(jié)論是否成立?若成立,加以證明;若不成立,請說明理由.

  四、小結(jié)歸納

  1.圓心角概念.

  2.在同圓或等圓中,如果兩個圓心角、兩條弧、兩條弦中有一組量相等,則它們所對應(yīng)的其余各組量都分別相等,及它們的應(yīng)用.

  五、作業(yè)設(shè)計

  作業(yè):復(fù)習(xí)鞏固作業(yè)和綜合運用為全體學(xué)生必做;拓廣探索為成績中上等學(xué)生必做. 教師布置學(xué)生畫圖,復(fù)習(xí)旋轉(zhuǎn)知識,為探究本節(jié)課定理作鋪墊

  學(xué)生通過畫圖復(fù)習(xí)旋轉(zhuǎn)知識,明白繞O點旋轉(zhuǎn),O點就是旋轉(zhuǎn)中心,旋轉(zhuǎn)30,就是旋轉(zhuǎn)角是30

  學(xué)生畫一個圓,按教師要求操作,觀察,思考,交流,教師給出圓心角定義,

  學(xué)生按照要求作圖,并觀察圖形,結(jié)合圓的旋轉(zhuǎn)不變性和相關(guān)知識進行思考,嘗試得出關(guān)系定理,再進行嚴(yán)格的幾何證明.

  學(xué)生思考,類比同圓中得到的結(jié)論進行探究,猜想,并驗證

  學(xué)生思考,明白該前提條件的不可缺性,師生分析,進一步理解定理.

  教師引導(dǎo)學(xué)生類比定理獨立用類似的方法進行探究,得到推論

  學(xué)生審題,理清題中的數(shù)量關(guān)系,由本節(jié)課知識思考解決方法.

  教師組織學(xué)生進行練習(xí),教師巡回檢查,集體交流評價,教師指導(dǎo)學(xué)生寫出解答過程,體會方法,總結(jié)規(guī)律.

  讓學(xué)生嘗試歸納,總結(jié),發(fā)言,體會,反思,教師點評匯總

  通過學(xué)生親自動手操作發(fā)現(xiàn)圓的旋轉(zhuǎn)不變性,為后續(xù)探究打下基礎(chǔ)

  通過該問題引起學(xué)生思考,進行探究,發(fā)現(xiàn)關(guān)系定理,初步感知培養(yǎng)學(xué)生的分析能力,解題能力.

  為繼續(xù)探究其推論奠定基礎(chǔ).

  感受類比思想,類比中全面透徹地理解和掌握關(guān)系定理和它的推論,并進行推廣,得到其他幾個定理,完整的把握所學(xué)知識.

  給出一般敘述,以其更好的應(yīng)用.

  培養(yǎng)學(xué)生解決問題的意識和能力,體會轉(zhuǎn)化思想,化未知為已知,從而解決本題.

  運用所學(xué)知識進行應(yīng)用,鞏固知識,形成做題技巧

  讓學(xué)生通過練習(xí)進一步理解,培養(yǎng)學(xué)生的應(yīng)用意識和能力

  歸納提升,加強學(xué)習(xí)反思,幫助學(xué)生養(yǎng)成系統(tǒng)整理知識的習(xí)慣

  鞏固深化提高

  板 書 設(shè) 計

  課題

  圓心角、弧、弦之間的關(guān)系定理 關(guān)系定理應(yīng)用

  1. 2. 歸納

  教 學(xué) 反 思

初中數(shù)學(xué)優(yōu)秀教案6

  一、課題引入

  為了讓學(xué)生更好地理解正數(shù)與負(fù)數(shù)的概念,作為教師有必要了解數(shù)系的發(fā)展.從數(shù)系的發(fā)展歷程來看,微積分的基礎(chǔ)是實數(shù)理論,實數(shù)的基礎(chǔ)是有理數(shù),而有理數(shù)的基礎(chǔ)則是自然數(shù).自然數(shù)為數(shù)學(xué)結(jié)構(gòu)提供了堅實的基礎(chǔ).

  對于“數(shù)的發(fā)展”(也即“數(shù)的擴充”),有著兩種不同的認(rèn)知體系.一是數(shù)的自然擴充過程,如圖1所示,即數(shù)系發(fā)展的自然的、歷史的體系,它反映了人類對數(shù)的認(rèn)識的歷史發(fā)展進程;另一是數(shù)的邏輯擴充過程,如圖2所示,即數(shù)系發(fā)展所經(jīng)歷的`理論的、邏輯的體系,它是策墨羅、馮諾伊曼、皮亞諾、高斯等數(shù)學(xué)家構(gòu)造的一種邏輯體系,其中綜合反映了現(xiàn)代數(shù)學(xué)中許多思想方法.

  二、課題研究

  在實際生活中,存在著諸如上升5m,下降5m;收入5000元,支出5000元等各種具體的數(shù)量.這些數(shù)量不僅與5、5000等數(shù)量有關(guān),而且還含有上升與下降、收入與支出等實際的意義.顯然上升5m與下降5m,收入5000元與支出5000元的實際意義是不同的

  為了準(zhǔn)確表達(dá)諸如此類的一些具有相反意義的量,僅用小學(xué)學(xué)過的正整數(shù)、正分?jǐn)?shù)、零,是不夠的如果把收入5000元記作5000元,那么支出5000元顯然是不可以也同樣記作5000元的收入與支出是“意義相反”的兩回事,是不能用同一個數(shù)來表達(dá)的因此,為了準(zhǔn)確表達(dá)支出5000元,就有必要引入了一種新數(shù)—負(fù)數(shù).

  我們把所學(xué)過的大于零的數(shù),都稱為正數(shù);而且還可以在正數(shù)的前面添加一個“+”號,比如在5的前面添加一個“+”號就成了“+5”,把“+5”稱為一個正數(shù),讀作“正5”.

  在正數(shù)的前面添加一個“-”號,比如在5的前面添加一個“-”號,就成了“-5”,所有按這種形式構(gòu)成的數(shù)統(tǒng)稱為負(fù)數(shù).“-5”讀作“負(fù)5”,“-5000”讀作“負(fù)5000”.

  于是“收入5000元”可以記作“5000元”,也可以記作“+5000元”,同時“支出5000元”就可以記作“-5000元”了.這樣具有相反意義的兩個數(shù)量就有了不同的表達(dá)方式.

  利用正數(shù)與負(fù)數(shù)可以準(zhǔn)確地表達(dá)或記錄諸如上升與下降、收入與支出、海平面以上與海平面以下、零上與零下等一些“具有相反意義的量”.再如,某個機器零件的實際尺寸比設(shè)計尺寸大0.5mm就可以表示成“0.5mm”,或“+0.5mm”;如果“另一個機器零件的實際尺寸比設(shè)計尺寸小0.5mm”,那么就可以表示成“-0.5mm”了.在一次足球比賽中,如果甲隊贏了乙隊2個球,那么可以把甲隊的凈勝球數(shù)記作“+2”,把乙隊的凈勝球數(shù)記作“-2”.

  借助實際例子能夠讓學(xué)生較好地理解為什么要引入負(fù)數(shù),認(rèn)識到負(fù)數(shù)是為了有效表達(dá)與實際生活相關(guān)的一些數(shù)量而引入的一種新數(shù),而不是人為地“硬造”出來的一種“新數(shù)”.

  三、鞏固練習(xí)

  例1博然的父母6月共收入4800元,可以將這筆收入記作+4800元;由于天氣炎熱,博然家用其中的1600元錢買了一臺空調(diào),又該怎樣記錄這筆支出呢?

  思路分析:“收入”與“支出”是一對“具有相反意義的量”,可以用正數(shù)或負(fù)數(shù)來表示.一般來說,把“收入4800元”記作+4800元,而把與之具有相反意義的量“支出1600元”記作-1600元.

  特別提醒:通常具有“增加、上升、零上、海平面以上、盈余、上漲、超出”等意義的數(shù)量,都用正數(shù)來表示;而與之相對的、具有“減少、下降、零下、海平面以下、虧損、下跌、不足”等意義的數(shù)量則用負(fù)數(shù)來表示.

  再如,若游泳池的水位比正常水位高5cm,則可以將這時游泳池的水位記作+5cm;若游泳池的水位比正常的水位低3cm,則可以將這時游泳池的水位記作-3cm;若游泳池的水位正好處于正常水位的位置,則將其水位記作0cm.

  例2周一證券交易市場開盤時,某支股票的開盤價為18.18元,收盤時下跌了2.11元;周二到周五開盤時的價格與前一天收盤價相比的漲跌情況及當(dāng)天的收盤價與開盤價的漲跌情況如下表:單位:元

  日期周二周三周四周五

  開盤+0.16+0.25+0.78+2.12

  收盤-0.23-1.32-0.67-0.65

  當(dāng)日收盤價

  試在表中填寫周二到周五該股票的收盤價.

  思路分析:以周二為例,表中數(shù)據(jù)“+0.16”所表示的實際意義是“周二該股票的開盤價比周一的收盤價高出了0.16元”;而表中數(shù)據(jù)“-0.23”則表示“周二該股票收盤時的收盤價比當(dāng)天的開盤價降低了0.23元”.

  因此,這五天該股票的開盤價與收盤價分別應(yīng)該按如下的方式進行計算:

  周一該股票的收盤價是18.18-2.11=16.07元;周二該股票的收盤價為16.07+0.16-0.23=16.00元;周三該股票的收盤價為16.00+0.25-1.32=14.93元;周四的該股票的收盤價為14.93+0.78-0.67=15.04元;周五該股票的收盤價為15.04+2.12-0.65=16.51元.

  例3甲、乙、丙三支球隊以主客場的形式進行雙循環(huán)比賽,每兩隊之間都比賽兩場,下表是這三支球隊的比賽成績,其中左欄表示主隊,上行表示客隊,比分中前后兩數(shù)分別是主客隊的進球數(shù),例如3∶2表示主隊進3球客隊進2球.

初中數(shù)學(xué)優(yōu)秀教案7

  學(xué)習(xí)目標(biāo)

  1、了解分式的概念,會判斷一個代數(shù)式是否是分式。

  2、能用分式表示簡單問題中數(shù)量之間的關(guān)系,能解釋簡單分式的實際背景或幾何意義。

  3、能分析出一個簡單分式有、無意義的條件。

  4、會根據(jù)已知條件求分式的值。

  學(xué)習(xí)重點

  分式的概念,掌握分式有意義的條件

  學(xué)習(xí)難點

  分式有、無意義的條件

  教學(xué)流程

  預(yù)習(xí)導(dǎo)航

  一、創(chuàng)設(shè)情境:

  京滬鐵路是我國東部沿海地區(qū)縱貫?zāi)媳钡慕煌ù髣用},全長1462km,是我國最繁忙的鐵路干線之一。如果貨運列車的速度為akm/h,快速列車的速度為貨運列車2倍,那么:

  (1)貨運列車從北京到上海需要多長時間?

  (2)快速列車從北京到上海需要多長時間?

  (3)已知從北京到上?焖倭熊嚤蓉涍\列車少用多少時間?

  觀察剛才你們所列的`式子,它們有什么特點?

  這些式子與分?jǐn)?shù)有什么相同和不同之處?

  合作探究

  一、概念探究:

  1、列出下列式子:

  (1)一塊長方形玻璃板的面積為2㎡,如果寬為am,那么長是

  (2)小麗用n元人民幣買了m袋瓜子,那么每袋瓜子的價格是 元。

  (3)正n邊形的每個內(nèi)角為 度。

  (4)兩塊面積分別為a公頃、b公頃的棉田,產(chǎn)棉花分別為m㎏、n㎏。這兩塊棉田平均每公頃產(chǎn)棉花 ______㎏。

  2、兩個數(shù)相除可以把它們的商表示成分?jǐn)?shù)的形式。如果用字母 分別表示分?jǐn)?shù)的分子和分母,那么 可以表示成什么形式呢?

  3、思考:

  上面所列各式有什么共同特點?

  (通過對以上幾個實際問題的研討,學(xué)會用 的形式表示實際問題中數(shù)量之間的關(guān)系,感受把分?jǐn)?shù)推廣到分式的優(yōu)越性和必要性)

  分式的概念:

  4、小結(jié)分式的概念中應(yīng)注意的問題.

 、 分式是兩個整式相除的商式,其中分子為被除式,分母為除式,分?jǐn)?shù)線起除號的作用;

 、 分式的分母中必須含有字母,而分子中可以含有字母,也可以不含字母,這是區(qū)別整式的重要依據(jù);

 、 如同分?jǐn)?shù)一樣,在任何情況下,分式的分母的值都不可以為0,否則分式無意義。分式分母不為零是隱含在此分式中而無須注明的條件。

  二、例題分析:

  例1 : 試解釋分式 所表示的實際意義

  例2:求分式 的值 ①a=3 ②a=—

  例3:當(dāng)取什么值時,分式 (1)沒有意義?(2)有意義?(3)值為零。

  三、展示交流:

  1、在 ____________中,是整式的有_____________________,是分式的有________________;

  2、 寫成分式為____________,且當(dāng)m≠_____時分式有意義;

  3、當(dāng)x_______時,分式 無意義,當(dāng)x______時,分式的值為1。

  4、 若分式 的值為正數(shù),則x的取值應(yīng)是 ( )

  A. , B. C. D. 為任意實數(shù)

  四、提煉總結(jié):

  1、什么叫分式?

  2、分式什么時候有意義?怎樣求分式的值

初中數(shù)學(xué)優(yōu)秀教案8

  教學(xué)目的

  1.通過對多個實際問題的分析,使學(xué)生體會到一元一次方程作為實際問題的數(shù)學(xué)模型的作用。

  2.使學(xué)生會列一元一次方程解決一些簡單的應(yīng)用題。

  3.會判斷一個數(shù)是不是某個方程的解。

  重點、難點

  1.重點:會列一元一次方程解決一些簡單的應(yīng)用題。

  2.難點:弄清題意,找出“相等關(guān)系”。

  教學(xué)過程

  一、復(fù)習(xí)提問

  一本筆記本1.2元。小紅有6元錢,那么她最多能買到幾本這樣的筆記本呢?

  解:設(shè)小紅能買到工本筆記本,那么根據(jù)題意,得

  1.2x=6

  因為1.2×5=6,所以小紅能買到5本筆記本。

  二、新授:

  問題1:某校初中一年級328名師生乘車外出春游,已有2輛校車可以乘坐64人,還需租用44座的`客車多少輛? (讓學(xué)生思考后,回答,教師再作講評)

  算術(shù)法:(328-64)÷44=264÷44=6(輛)

  列方程:設(shè)需要租用x輛客車,可得。

  44x+64=328 (1)

  解這個方程,就能得到所求的結(jié)果。

  問:你會解這個方程嗎?試試看?

  問題2:在課外活動中,張老師發(fā)現(xiàn)同學(xué)們的年齡大多是13歲,就問同學(xué):“我今年45歲,幾年以后你們的年齡是我年齡的三分之一?”

  通過分析,列出方程:13+x=(45+x)

  問:你會解這個方程嗎?你能否從小敏同學(xué)的解法中得到啟發(fā)?

  把x=3代人方程(2),左邊=13+3=16,右邊=(45+3)=×48=16,

  因為左邊=右邊,所以x=3就是這個方程的解。

  這種通過試驗的方法得出方程的解,這也是一種基本的數(shù)學(xué)思想方法。也可以據(jù)此檢驗一下一個數(shù)是不是方程的解。

  問:若把例2中的“三分之一”改為“二分之一”,那么答案是多少?動手試一試,大家發(fā)現(xiàn)了什么問題?

  同樣,用檢驗的方法也很難得到方程的解,因為這里x的值很大。另外,有的方程的解不一定是整數(shù),該從何試起?如何試驗根本無法人手,又該怎么辦?

  三、鞏固練習(xí)

  教科書第3頁練習(xí)1、2。

  四、小結(jié)。

  本節(jié)課我們主要學(xué)習(xí)了怎樣列方程解應(yīng)用題的方法,解決一些實際問題。談?wù)勀愕膶W(xué)習(xí)體會。

  五、作業(yè) 。

  教科書第3頁,習(xí)題6.1第1、3題。

初中數(shù)學(xué)優(yōu)秀教案9

  教學(xué)設(shè)計思想:本節(jié)安排1課時講授;影子是生活中常見的現(xiàn)象,教學(xué)中引用太陽光照射下的影子種種生活中的實例,目的是讓學(xué)生體會影子在生活中的存在,激發(fā)學(xué)習(xí)的興趣。課前布置作業(yè)讓學(xué)生觀察不同時刻物體影子的變化,親自感受變化的情況,再通過教師講授逐步加深對投影相關(guān)概念的理解,并掌握其應(yīng)用。

  教學(xué)目標(biāo):

  1.知識與技能

  經(jīng)歷實踐、探索的過程,知道平行投影、正投影的含義;

  能夠確定物體在太陽光下的影子的特征;

  知道在不同時刻物體在太陽光下形成的影子的大小和方向是不同的。

  2.過程與方法

  通過觀察、想象、實踐形成一定的空間想象能力,發(fā)展空間觀念;

  探索不同時刻不同物體的影子的變化規(guī)律:影子長的比等于物體高度的比。

  3.情感、態(tài)度與價值觀

  通過理論研究自然現(xiàn)象,引發(fā)對大自然和社會生活探索的欲望,提高學(xué)習(xí)興趣,增進數(shù)學(xué)的應(yīng)用意識。

  教學(xué)重點:理解平行投影的含義。

  教學(xué)難點:通過對平行投影的認(rèn)識進行物體與投影之間的相互轉(zhuǎn)化。

  教學(xué)方法:啟發(fā)式。

  教學(xué)安排:1課時。

  教學(xué)媒體:幻燈片。

  教學(xué)過程:

  課前準(zhǔn)備:讓學(xué)生在課前觀察物體在陽光下的影子,自己總結(jié)出一些結(jié)論。

  一、創(chuàng)設(shè)情景

  問題1:

  師:請看這幅圖片,哪位同學(xué)知道這是什么?(提出問題,激發(fā)學(xué)生的興趣)

  教師陳述:日晷是我國古代利用日影測定時刻的儀器,它由“晷面”和“晷針”組成。

  當(dāng)太陽光照在日晷上時,晷針的影子就會投向晷面。隨著時間的推移,晷針的影子在晷面上慢慢地移動。以此來顯示時刻。(看下圖)

  設(shè)疑激趣:利用古代顯示時刻的物體來引起學(xué)生的興趣。

  二、引出課題

  問題2:

  師:太陽光可看成平行的直線,在陽光下,我們經(jīng)?匆娢矬w的影子,那同學(xué)們你們知道影子的長短和方向在一天中是怎樣變化的嗎?

  下面我們來看幾副圖片:(幻燈顯示)

  (1) (2) (3)

  上面的'三幅圖是在我國北方某地某天上午不同時刻的同一位置拍攝的,請根據(jù)樹的影子,判斷拍攝的先后順序,并說明理由。

  生:通過這幾天觀察,如果上午觀察物體的影子,都是逐漸變短的一個過程,所以拍攝的先后順序是:(3)→(2)→(1)。

  師:這位同學(xué)回答的很正確;但是哪位同學(xué)能解釋一下呢?

  生:上午太陽從東方地平線上升起,逐漸升高,這里我們把太陽光線看成平行的直線,根據(jù)以前我們學(xué)過的幾何知識,通過畫圖,顯而易見影子隨著太陽的升高逐漸變短的。

  師:回答的很好;根據(jù)上面的總結(jié),我們觀看下面的圖片,觀察有什么變化?

  在我國北方地區(qū),人們居住的房屋窗戶大多是朝南的,中午某時刻室內(nèi)的窗影在一年四季里會有什么變化呢?

  學(xué)生相互討論,交流。

  生:夏天的時候影子是最短的,冬天是最長的,春秋次之。

  活動:學(xué)生有豐富的關(guān)于影子的生活經(jīng)驗,讓他們結(jié)合經(jīng)驗想象自己的影子從早到晚是如何變化的(包括大小和方向)?并叫三個學(xué)生代表太陽、物體、影子,模擬太陽東升西落。得出結(jié)論:大——小——大;西——北偏西——正北——北偏東——東。

  教師總結(jié):物體在光線的照射下,會在地面或墻面上留下它的影子,這種現(xiàn)象就是投影(projection)。

  太陽的光線可看做平行線的,像這樣的光線照射在物體上,所形成的投影叫做平行投影。光線是投影線,地面或墻面是投影面。

  如上圖,用一束平行光線豎直照射水平放置的三角尺上,投影線、三角尺在水平面上的投影是平行投影。在這種平行投影中,光線是豎直照射在水平面上的。像這種平行投影又叫做正投影。

  現(xiàn)在大家對投影有了一定的了解,再看下面這個圖形,思考問題:[

  如圖,正方體正面(R面)在V面上的正投影 。

  1.R面的正投影是什么圖形?與R面相對的面的在正投影是什么圖形?

  2.Q面的正投影是什么圖形?與Q面相對的面的正投影是什么圖形?

  3.P面及與它相對的面的正投影分別是什么圖形?

  學(xué)生相應(yīng)回答上面的問題。

  師:我們學(xué)習(xí)了投影的相關(guān)概念,也觀看了許多投影的圖片,那同學(xué)們思考這樣的問題:

 。1)一個物體的正投影是立體圖形還是平面圖形?

  (2)點、線段和多邊形的正投影可能分別是什么圖形?

  第一問顯而易見,教師可以找中下等學(xué)生回答。

  第二問教師可以通過課件演示,學(xué)生觀看,回答問題。(參看課件:點、線、面的投影)

  師生互動:

  例:旗桿直立在A處,它的平行投影如圖所示。

  (1)請畫出小明站在B處時的投影(用線段表示)。并說明你這樣畫的理由。

 。2)如果小明站在C處,請畫出他的投影(用線段表示),并比較小明站在B、C兩處投影的長短。

 。3)旗桿的高度與它投影長的比和小明的身高與他投影長的比有什么關(guān)系?為什么?

  學(xué)生在教師的引導(dǎo)下,自主完成這道例題,教師再進行講解。

  教師總結(jié):一般地,兩個直立于地面的物體在陽光下的投影,或平行或在同一條直線上,兩個物體、他們的平行投影及過物體頂端的投影線,分別組成直角三角形,這兩個三角形相似。

  三、練習(xí)

  1.大致說出我國北方的確一天中(早晨、中午、傍晚),人在陽光下的投影的方向和長短。

  2.下圖是一棵大樹在陽光下的投影,請畫出另一棵樹的投影(用線段表示)。

  3.結(jié)合地理知識,談?wù)勗谖覈男┑貐^(qū)會有太陽直射現(xiàn)象。這時人的投影是什么樣的?

  四、課堂總結(jié)

  板書設(shè)計:

  平行投影

  一、導(dǎo)入 平行投影

  問題1: 正投影

  二、新授 例:

  問題2:

  三、練習(xí)

  投影:

  四、總結(jié)

初中數(shù)學(xué)優(yōu)秀教案10

  知識點:

  因式分解定義,提取公因式、應(yīng)用公式法、分組分解法、二次三項式的因式(十字相乘法、求根)、因式分解一般步驟。

  教學(xué)目標(biāo):

  理解因式分解的概念,掌握提取公因式法、公式法、分組分解法等因式分解方法,掌握利用二次方程求根公式分解二次二項式的方法,能把簡單多項式分解因式。

  考查重難點與常見題型:

  考查因式分解能力,在中考試題中,因式分解出現(xiàn)的頻率很高。重點考查的分式提取公因式、應(yīng)用公式法、分組分解法及它們的綜合運用。習(xí)題類型以填空題為多,也有選擇題和解答題。

  教學(xué)過程:

  因式分解知識點

  多項式的因式分解,就是把一個多項式化為幾個整式的.積。分解因式要進行到每一個因式都不能再分解為止。分解因式的常用方法有:

 。1)提公因式法

  如多項式

  其中m叫做這個多項式各項的公因式, m既可以是一個單項式,也可以是一個多項式。

  (2)運用公式法,即用

  寫出結(jié)果。

  (3)十字相乘法

  對于二次項系數(shù)為l的二次三項式 尋找滿足ab=q,a+b=p的a,b,如有,則對于一般的二次三項式尋找滿足

  a1a2=a,c1c2=c,a1c2+a2c1=b的a1,a2,c1,c2,如有,則

  (4)分組分解法:把各項適當(dāng)分組,先使分解因式能分組進行,再使分解因式在各組之間進行。

  分組時要用到添括號:括號前面是“+”號,括到括號里的各項都不變符號;括號前面是“-”號,括到括號里的各項都改變符號。

 。5)求根公式法:如果有兩個根X1,X2,那么

  2、教學(xué)實例:學(xué)案示例

  3、課堂練習(xí):學(xué)案作業(yè)

  4、課堂:

  5、板書:

  6、課堂作業(yè):學(xué)案作業(yè)

  7、教學(xué)反思:

初中數(shù)學(xué)優(yōu)秀教案11

  一、教學(xué)目的:

  1.理解并掌握菱形的定義及兩個判定方法;會用這些判定方法進行有關(guān)的論證和計算;

  2.在菱形的判定方法的探索與綜合應(yīng)用中,培養(yǎng)學(xué)生的觀察能力、動手能力及邏輯思維能力。

  二、重點、難點

  1.教學(xué)重點:菱形的兩個判定方法。

  2.教學(xué)難點:判定方法的證明方法及運用。

  三、例題的意圖分析

  本節(jié)課安排了兩個例題,其中例1是教材P109的`例3,例2是一道補充的題目,這兩個題目都是菱形判定方法的直接的運用,主要目的是能讓學(xué)生掌握菱形的判定方法,并會用這些判定方法進行有關(guān)的論證和計算.這些題目的推理都比較簡單,學(xué)生掌握起來不會有什么困難,可以讓學(xué)生自己去完成.程度好一些的班級,可以選講例3.

  四、課堂引入

  1.復(fù)習(xí)

 。1)菱形的定義:一組鄰邊相等的平行四邊形;

  (2)菱形的性質(zhì)1菱形的四條邊都相等;性質(zhì)2菱形的對角線互相平分,并且每條對角線平分一組對角;

 。3)運用菱形的定義進行菱形的判定,應(yīng)具備幾個條件?(判定:2個條件)

  2.問題

  要判定一個四邊形是菱形,除根據(jù)定義判定外,還有其它的判定方法嗎?

  3.探究

 。ń滩腜109的探究)用一長一短兩根木條,在它們的中點處固定一個小釘,做成一個可轉(zhuǎn)動的十字,四周圍上一根橡皮筋,做成一個四邊形.轉(zhuǎn)動木條,這個四邊形什么時候變成菱形?

  通過演示,容易得到:

  菱形判定方法1對角線互相垂直的平行四邊形是菱形。

  注意此方法包括兩個條件:

  (1)是一個平行四邊形。

 。2)兩條對角線互相垂直。

初中數(shù)學(xué)優(yōu)秀教案12

  一、 教學(xué)目標(biāo)

  1、 知識與技能目標(biāo)

  掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。

  2、 能力與過程目標(biāo)

  經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。

  3、 情感與態(tài)度目標(biāo)

  通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。

  二、 教學(xué)重點、難點

  重點:運用有理數(shù)乘法法則正確進行計算。

  難點:有理數(shù)乘法法則的'探索過程,符號法則及對法則的理解。

  三、 教學(xué)過程

  1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。

  教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?

  學(xué)生:26米。

  教師:能寫出算式嗎?學(xué)生:……

  教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題

  2、 小組探索、歸納法則

 。1)教師出示以下問題,學(xué)生以組為單位探索。

  以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負(fù)方向。

 、 2 ×3

  2看作向東運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  2 ×3=

 、 -2 ×3

  -2看作向西運動2米,×3看作向原方向運動3次。

  結(jié)果:向 運動 米

  -2 ×3=

 、 2 ×(-3)

  2看作向東運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

  2 ×(-3)=

  ④ (-2) ×(-3)

  -2看作向西運動2米,×(-3)看作向反方向運動3次。

  結(jié)果:向 運動 米

 。-2) ×(-3)=

 。2)學(xué)生歸納法則

  ①符號:在上述4個式子中,我們只看符號,有什么規(guī)律?

 。+)×(+)=( ) 同號得

 。-)×(+)=( ) 異號得

  (+)×(-)=( ) 異號得

 。-)×(-)=( ) 同號得

  ②積的絕對值等于 。

  ③任何數(shù)與零相乘,積仍為 。

  (3)師生共同用文字?jǐn)⑹鲇欣頂?shù)乘法法則。

  3、 運用法則計算,鞏固法則。

  (1)教師按課本P75 例1板書,要求學(xué)生述說每一步理由。

 。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。

 。3)學(xué)生做練習(xí),教師評析。

  (4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。

初中數(shù)學(xué)優(yōu)秀教案13

  教學(xué)內(nèi)容:

  教科書第76頁,整式的加減單元復(fù)習(xí)。

  教學(xué)目的和要求:

  1.使學(xué)生對本章內(nèi)容的認(rèn)識更全面、更系統(tǒng)化。

  2.進一步加深學(xué)生對本章基礎(chǔ)知識的理解以及基本技能(主要是計算)的掌握。

  3.通過復(fù)習(xí),培養(yǎng)學(xué)生主動分析問題的習(xí)慣。

  教學(xué)重點和難點:

  重點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算。

  難點:本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運用;整式的加減運算。

  教學(xué)方法:

  分層次教學(xué),講授、練習(xí)相結(jié)合。

  教學(xué)過程:

  一、復(fù)習(xí)引入:

  1.主要概念:

  (1)關(guān)于單項式,你都知道什么?

  (2)關(guān)于多項式,你又知道什么?

  引導(dǎo)學(xué)生積極回答所提問題,通過幾名同學(xué)的回答,復(fù)習(xí)單項式的定義、單項式的系數(shù)、次數(shù)的定義,多項式的定義以及多項式的項、同類項、次數(shù)、升降冪排列等定義。

  (3)什么叫整式?

  在學(xué)生回答的基礎(chǔ)上,進行歸納、總結(jié),用投影演示:

  整式

  2.主要法則:

 、偬釂枺涸诒菊轮,我們學(xué)習(xí)了哪幾個重要的法則?分別如何敘述?

 、谠趯W(xué)生回答的基礎(chǔ)上,進行歸納總結(jié):

  整式的加減

  二、講授新課:

  1.例題:

  例1:找出下列代數(shù)式中的單項式、多項式和整式。

  ,4xy, , ,x2+x+ ,0, ,m,―2.01×105

  解:單項式有4xy, ,0,m,―2.01×105;多項式有 ;

  整式有4xy, ,0,m,-2.01×105, 。

  此題由學(xué)生口答,并說明理由。通過此題,進一步加深學(xué)生對于單項式、多項式、整式的定義的理解。

  例2:指出下列單項式的系數(shù)、次數(shù):ab,―x2, xy5, 。

  解:ab:系數(shù)是1,次數(shù)是2; ―x2:系數(shù)是―1,次數(shù)是2;

  xy5:系數(shù)是 ,次數(shù)是6; :系數(shù)是― ,次數(shù)是9。

  此題在學(xué)生回答過程中,及時強調(diào)“系數(shù)”及“次數(shù)”定義中應(yīng)注意的問題:系數(shù)應(yīng)包括前面的“+”號或“―”號,次數(shù)是“指數(shù)之和”。

  例3:指出多項式a3―a2b―ab2+b3―1是幾次幾項式,最高次項、常數(shù)項各是什么?

  解:是三次五項式,最高次項有:a3、―a2b、―ab2、b3,常數(shù)項是―1。

  例4:化簡,并將結(jié)果按x的降冪排列:

  (1)(2x4―5x2―4x+1)―(3x3―5x2―3x); (2)―[―(―x+ )]―(x―1);

  (3)―3( x2―2xy+y2)+ (2x2―xy―2y2)。

  解:(1)原式=2x4―3x2―x+1; (2)原式=―2x+ ; (3)原式=― x2+ xy―4y2。

  通過此題強調(diào):(1)去括號(包括去多重括號)的問題;(2)數(shù)字與多項式相乘時分配律的使用問題。

  例5:化簡、求值:5ab―2[3ab―(4ab2+ ab)]―5ab2,其中a= ,b=― 。

  解:化簡的結(jié)果是:3ab2,求值的.結(jié)果是 。

  例6:一個多項式加上―2x3+4x2y+5y3后,得x3―x2y+3y3,求這個多項式,并求當(dāng)x=― ,y= 時,這個多項式的值。

  解:此多項式為3x3―5x2y―2y3;值為― 。

  3.課堂練習(xí):

  課本p76―77:1,2, 3⑴⑶⑸,4⑴⑶⑸⑺,5,7

  四、課堂作業(yè):

  課本76―77:3⑵⑷⑹,4⑵⑷⑹⑻,6,8,9

  板書設(shè)計:

  教學(xué)后記:

  ①本節(jié)是全章的復(fù)習(xí)課。首先是復(fù)習(xí)本章的主要概念和法則。在上節(jié)課所留復(fù)習(xí)作業(yè)的基礎(chǔ)上,一上課,就進行課堂提問,“關(guān)于單項式,你都知道什么”,“關(guān)于多項式,你又知道什么”。通過學(xué)生的回答,既可檢查學(xué)生作業(yè)完成的情況,又充分地調(diào)動學(xué)生積極性,使學(xué)生主動參與到課堂中來。而且這樣的問題具有一定的開放性,可使學(xué)生的思維發(fā)散,把他們所知道的有關(guān)內(nèi)容都說出來。通過對一個問題的多個側(cè)面地回答,可進一步加深學(xué)生對基礎(chǔ)知識的理解與重視,又可培養(yǎng)他們主動分析問題的習(xí)慣。

  ②對于應(yīng)該強調(diào)的問題,如果只是泛泛而談,效果不大。因此,在復(fù)習(xí)了本章的主要知識后,出了一組練習(xí),通過具體的題目,強調(diào)有關(guān)的問題,將給學(xué)生留下更深的印象,學(xué)習(xí)效果會更好。

初中數(shù)學(xué)優(yōu)秀教案14

  ●教學(xué)目標(biāo)

 。ㄒ唬┙虒W(xué)知識點

  1.掌握極差、方差、標(biāo)準(zhǔn)差的概念.

  2.明白極差、方差、標(biāo)準(zhǔn)差是反映一組數(shù)據(jù)穩(wěn)定性大小的

  3.用計算器(或計算機)計算一 組數(shù)據(jù)的標(biāo)準(zhǔn)差與方差.

 。ǘ┠芰τ(xùn)練要求

  1.經(jīng)歷對數(shù)據(jù)處理的過程,發(fā)展學(xué)生初步的統(tǒng)計意識和數(shù)據(jù)處理能力.

  2.根據(jù)極差、方差、標(biāo)準(zhǔn)差的大小,解決問題,培養(yǎng)學(xué)生解決問題的能力.

  (三)情感與價值觀要求

  1.通過解決現(xiàn)實情境中問題,增強數(shù)學(xué)素養(yǎng),用數(shù) 學(xué)的眼光看世界.

  2.通過小組活動,培養(yǎng)學(xué)生的合作意識和能力.

  ●教學(xué)重點

  1.掌握極差、方差或標(biāo)準(zhǔn)差的概念,明白極差、方差、標(biāo)準(zhǔn)差是刻畫數(shù)量離散程度的幾個統(tǒng)計量.

  2.會求一組數(shù)據(jù)的極差、方差、標(biāo)準(zhǔn)差,并會判斷這組數(shù)據(jù)的穩(wěn)定性 .

  ●教學(xué)難點

  理解方差、標(biāo)準(zhǔn)差的概念,會求一組數(shù)據(jù)的方差、標(biāo)準(zhǔn)差.

  ●教學(xué)方法

  啟發(fā)引導(dǎo)法

  ●教學(xué)過程

 、.創(chuàng)設(shè)現(xiàn)實問題情景,引入新課

 。蹘煟菰谛畔⒓夹g(shù)不斷發(fā)展的社會里,人們需要對大量紛繁復(fù)雜的信息作出恰當(dāng)?shù)倪x擇與判斷.

  當(dāng)我們?yōu)榧尤搿癢TO”而欣喜若狂的時刻,為了提高農(nóng)副產(chǎn)品的國際競爭力,一些行業(yè)協(xié)會對農(nóng)副產(chǎn)品的規(guī)格進行了劃分.某外貿(mào)公司要出口 一批規(guī)格為75 g的雞腿.現(xiàn)有2個廠家提供貨源.

 。凵荩1)根據(jù)20只雞腿在圖中的分布情況,可知甲、乙兩廠被抽取雞腿的平均質(zhì)量分別為75 g.

 。2)設(shè)甲、乙兩廠被抽取的雞腿的平均質(zhì)量 甲, 乙,根據(jù)給出的數(shù)據(jù),得

  甲=75+ [ 0-1-1+ 1-2+1+0+2+2-1-1+0+0+1-2+1-2+3+2-3]=75+ ×0=75(g)

  乙=75+ [0+3-3+2-1+0-2+4-3+ 0+5-4+1+2-2+3-4+1-2+0]=75+ ×0=75(g)

 。3) 從甲廠抽取的這20只雞腿質(zhì)量的最大值是78 g,最小值是72 g,它們相差78-72=6 g;從乙廠抽取的這20只雞腿質(zhì)量的最大值是80 g,最小值是71 g,它們相差80-71=9(g).

 。4)如果只考慮雞腿的規(guī)格,我認(rèn)為外貿(mào)公司應(yīng)購買甲廠的雞腿,因為甲廠雞腿規(guī)格比較穩(wěn)定,在75 g左右擺動幅度較小.

 。蹘煟莺芎.在我們的實際生活中,會出現(xiàn)上面的情況,平均值一樣,這里我們也關(guān)心數(shù)據(jù)與平均值的離散程度 .也就是說,這種情況下,人們除了關(guān)心數(shù)據(jù)的“平均值”即“平均水平”外,人們往往還關(guān)注數(shù)據(jù)的離散程度,即相對于“平均水平”的偏離情況.

  從上圖也能很直觀地觀察出:甲廠相對于“平均水平”的偏離程度比乙廠相對于“平均水平” 的偏離程度小.

  這節(jié)課我們就來學(xué)習(xí)關(guān)于數(shù)據(jù)的離散程度的幾個量.

  Ⅱ.講授新課

 。蹘煟菰谏厦鎺讉問題中,你認(rèn)為哪一個數(shù)值是反映數(shù)據(jù)的離散程度的一個量呢?

 。凵菸艺J(rèn)為最大值與最小值的差是反映數(shù)據(jù)離 散程度的一個量.

  [師]很正確.我們把一組數(shù)據(jù)中最大數(shù)據(jù)與 最小數(shù)據(jù)的差叫極差.而極差是刻畫數(shù)據(jù)離散程度的一個統(tǒng)計量.

 。凵荩1)丙廠這20只雞腿質(zhì)量的平均數(shù):

  丙= [75×2+74×4+73×2+72×3+76×3+77×3+78×2+79]=75.1(g)

  極差為:79-72=7(g)

 。凵菰诘冢2)問中,我認(rèn)為可以用丙廠這20只雞腿的質(zhì)量與其平均數(shù)的`差的和來刻畫這20只雞腿的質(zhì)量與其平均數(shù)的差距.

  甲廠20只雞 腿的質(zhì)量與相應(yīng)的平均數(shù)的差距為:

 。75-75)+(74-75)+(74-75)+(76-75)+(73-75)+(76-75)+(75-75)+(77-75)+(77-75)+(74-75)+(74-75)+(75-75)+(75-75)+(76-75)+ (73-75)+(76-75)+(73-75)+(78-75)+(77-75)+(72-75)

  =0-1-1+1-2+1+0+2+2-1-1+0 +0+1-2+1-2+3+2-3=0;

  丙廠20只雞腿的質(zhì)量與相應(yīng)的平均數(shù)的差距為:

 。75-75.1)+(75-75.1)+(74- 75.1)+(74-75.1)+(74-75.1)+(74-75.1)+(73-75.1)+(73-75.1)+(72-75.1)+(72-75.1)+(72-75.1)+(76-75.1)+(76-75.1)+(76-75.1)+(77-75.1) +(77-75.1)+(77-75.1)+(78-75.1)+(78-75.1)+(79-75.1)=0

  由此可知不能用各數(shù)據(jù)與平均數(shù)的差的和來衡量這組數(shù)據(jù) 的波動大小.

  數(shù)學(xué)上,數(shù)據(jù)的離散程度還可以用方差或標(biāo)準(zhǔn)差來刻畫.

  其中方差是各個數(shù)據(jù)與平均數(shù)之差的平方的平均數(shù),即

  s2= [(x1- )2+(x2- )2+…+(xn- )2]

  其中 是x1,x2,…,xn的平均數(shù),s2是 方差,而標(biāo)準(zhǔn)差就是方差的算術(shù)平方根.

  [生]為什么方差概念中要除以數(shù)據(jù)個數(shù)呢?

  [師]是為了消除數(shù)據(jù)個數(shù)的印象.

  由此我們知道:一般而言,一組數(shù)據(jù)的極差、方差或標(biāo)準(zhǔn)差越小,這組數(shù)據(jù)就越穩(wěn)定.

 。凵輼O差還比較容易算出.而方差、標(biāo)準(zhǔn)差算起來就麻煩多了.

 。蹘煟菸覀兛梢允褂糜嬎闫鳎梢院芊奖愕赜嬎愠鲆唤M數(shù)據(jù)的標(biāo)準(zhǔn)差與方差,其大體步驟是 ;進入統(tǒng)計計算狀態(tài),輸入數(shù)據(jù),按鍵就可得出標(biāo)準(zhǔn)差.

  同學(xué)們可在自己的計算器上探 索計算標(biāo)準(zhǔn)差的具體操作

  計算器一般不具有求方差的功能,可以先求出標(biāo)準(zhǔn)差,再平方即可求出方差.

  [生]s甲2= [02+1+1+1+4+1+0+4+4+1+1+1+4+1+4+9+4+9]= ×50= =2.5;

  s丙2= [0.12+0.12+1.12×4+2.12×2+3.12×3+0.92×3+1.92×3+2.92×2+3.9]= ×76 .49=3.82.

  因為s甲2<s丙2.

  所以根據(jù)計算的結(jié)果,我認(rèn)為甲廠的產(chǎn)品更符合要求.

 、.隨堂練習(xí)

 、.課時小結(jié)

  這節(jié)課 ,我們著重學(xué)習(xí):對于一組數(shù)據(jù),有時只知道它的平均數(shù)還不夠,還需要知道它的波動大;描述一組數(shù)據(jù)的波動大小的量不止一種,最常用的極差、方差、標(biāo)準(zhǔn)差;方差 和標(biāo)準(zhǔn)差既有聯(lián)系 ,也有區(qū)別.

  Ⅴ.課后作業(yè)

 、.活動與探究

  甲、乙兩名學(xué)生進行射擊練習(xí),兩人在相同條件下各射靶10次,將射擊結(jié)果作統(tǒng)計分析如下:

 。1)請你填上表中乙學(xué)生的相關(guān)數(shù)據(jù);

 。2)根據(jù)你所學(xué)的統(tǒng)計數(shù)知識,利用上述某些數(shù)據(jù)評價甲、乙兩人的射擊水平.

初中數(shù)學(xué)優(yōu)秀教案15

  4.1二元一次方程

  【教學(xué)目標(biāo)】

  知識與技能目標(biāo)

  1、通過與一元一次方程的比較,能說出二元一次方程的概念,并會辨別一個方程是不是

  二元一次方程;

  2、通過探索交流,會辨別一個解是不是二元一次方程的解,能寫出給定的二元一次方程的解,了解方程解的不唯一性;

  3、會將一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式。過程與方法目標(biāo)經(jīng)歷觀察、比較、猜想、驗證等數(shù)學(xué)學(xué)習(xí)活動,培養(yǎng)分析問題的能力和數(shù)學(xué)說理能力;

   情感與態(tài)度目標(biāo)

  1、通過與一元一次方程的類比,探究二元一次方程及其解的概念,進一步培養(yǎng)運用類比轉(zhuǎn)化的思想解決問題的能力;

  2、通過對實際問題的分析,培養(yǎng)關(guān)注生活,進一步體會方程是刻畫現(xiàn)實世界的有效數(shù)學(xué)模型,培養(yǎng)良好的數(shù)學(xué)應(yīng)用意識。

  【重點、難點】

  重點:二元一次方程的概念及二元一次方程的解的概念。

  難點1、了解二元一次方程的解的不唯一性和相關(guān)性。即了解二元一次方程的解有無數(shù)個,

  但不是任意的兩個數(shù)是它的解。

  2、把一個二元一次方程變形成用關(guān)于一個未知數(shù)的代數(shù)式表示另一個未知數(shù)的形式,其實質(zhì)是解一個含有字母系數(shù)的方程。

  【教學(xué)方法與教學(xué)手段】

  1、通過創(chuàng)設(shè)問題情境,讓學(xué)生在尋求問題解決的過程中認(rèn)識二元一次方程,了解二元一

  次方程的特點,體會到二元一次方程的引入是解決實際問題的需要。

  2、通過觀察、思考、交流等活動,激發(fā)學(xué)習(xí)情緒,營造學(xué)習(xí)氣氛,給學(xué)生一定的時間和

  空間,自主探討,了解二元一次方程的解的不唯一性和相關(guān)性。

  3、通過學(xué)練結(jié)合,以游戲的形式讓學(xué)生及時鞏固所學(xué)知識。

  【教學(xué)過程】

  一、創(chuàng)設(shè)情境導(dǎo)入新課

  1、一個數(shù)的3倍比這個數(shù)大6,這個數(shù)是多少?

  2、寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?

  思考:這個問題中,有幾個未知數(shù)?能列一元一次方程求解嗎?

  如果設(shè)黃卡取x張,藍(lán)卡取y張,你能列出方程嗎?

  3、在高速公路上,一輛轎車行駛2時的路程比一輛卡車行駛3時的路程還多20千米。如果設(shè)轎車的速度是a千米/時,卡車的速度是b千米/時,你能列出怎樣的方程?

  二、師生互動探索新知

  1、推陳出新發(fā)現(xiàn)新知

  引導(dǎo)學(xué)生觀察所列的方程:5x?2y?22,2a?3b?20,這兩個方程有哪些共同特征?這些特征與一元一次方程比較,哪些是相同的,哪些是不同的?你能給它們?nèi)名字嗎?

  (板書:二元一次方程)

  根據(jù)它們的共同特征,你認(rèn)為怎樣的方程叫做二元一次方程?(二元一次方程的定義:含有兩個未知數(shù),且含有未知數(shù)的項的次數(shù)都是一次的方程叫做二元一次方程。)

  2、小試牛刀鞏固新知

  判斷下列各式是不是二元一次方程

  (1)x2?y?0(2)12a?b?2b?0(3)y?x(4)x??123y

  3、師生互動再探新知

  (1)什么是方程的解?(使方程兩邊的值相等的未知數(shù)的值,叫做方程的解。)

  (2)你能給二元一次方程的解下一個定義嗎?(使二元一次方程兩邊的'值相等的一對未

  知數(shù)的值,叫做二元一次方程的一個解。)

  ?若未知數(shù)設(shè)為x,y,記做x?,若未知數(shù)設(shè)為a,b,記做

  ?y?

  4、再試牛刀檢驗新知

  (1)檢驗下列各組數(shù)是不是方程2a?3b?20的解:(學(xué)生感悟二元一次方程解的不唯一性)

  a?4a?5a?0a?100

  b?3b??1020b??b?6033

  (2)你能寫出方程x-y=1的一個解嗎?(再一次讓學(xué)生感悟二元一次方程的解的不唯一性)

  5、自我挑戰(zhàn)三探新知

  有3張寫有相同數(shù)字的藍(lán)卡和2張寫有相同數(shù)字的黃卡,這五張卡片上的數(shù)字之和為10。設(shè)藍(lán)卡上的數(shù)字為x,黃卡上的數(shù)字為y,根據(jù)題意列方程。3x?2y?10

  請找出這個方程的一個解,并寫出你得到這個解的過程。

  學(xué)生在解二元一次方程的過程中體驗和了解二元一次方程解的不唯一性。

  6、動動筆頭鞏固新知

  獨立完成課本第81頁課內(nèi)練習(xí)2

  三、你說我說清點收獲

  比較一元一次方程和二元一次方程的相同點和不同點

  相同點:方程兩邊都是整式

  含有未知數(shù)的項的次數(shù)都是一次

  如何求一個二元一次方程的解

  四、知識鞏固

  1、必答題

  (1)填空題:若mxy?9x?3yn?1?7是關(guān)于x,y的二元一次方程,則m?n?x?2y?5變形正確的有2

  10?xx?10①x?5?4y②x?10?4y③y?④y?44

  (3x?7是方程2x?y?15的解。()(2)多選題:方程

  y?1

  x?7

  (4)判斷題:方程2x?y?15的解是。()y?1

  2、搶答題

  是方程2x?3y?5的一個解,求a的值。(1)已知x??2

  y?a

  (2)寫出一個解為x?3的二元一次方程。

  y?1

  3、個人魅力題

  寫有數(shù)字5的黃卡和寫有數(shù)字2的藍(lán)卡若干張,問黃卡和藍(lán)卡各取幾張,才能使取到的卡片上的數(shù)字之和為22?設(shè)黃卡取x張,藍(lán)卡取y張,根據(jù)題意列方程:5x?2y?22你能完成這道題目嗎?

  五、布置作業(yè)

【初中數(shù)學(xué)優(yōu)秀教案】相關(guān)文章:

初中數(shù)學(xué)教學(xué)教案04-24

初中數(shù)學(xué)教案11-26

初中數(shù)學(xué)教案04-15

初中數(shù)學(xué)教案模板12-01

初中數(shù)學(xué)教學(xué)優(yōu)質(zhì)教案02-06

小學(xué)數(shù)學(xué)優(yōu)秀教案05-22

初中數(shù)學(xué)教學(xué)反思(優(yōu)秀)07-07

(優(yōu)秀)初中數(shù)學(xué)教學(xué)反思07-05

初中地理教案優(yōu)秀02-19