久久538,国产精品第一区在线观看,特黄又色牲交视频免费…,亚洲欧美综合在线观看,一区二区三区毛片免费,欧美黄网站免费观看,女人18**毛片一级毛片

勾股定理教案

時間:2024-07-14 18:02:16 教案 我要投稿

勾股定理教案合集15篇

  作為一名教職工,常常需要準(zhǔn)備教案,借助教案可以讓教學(xué)工作更科學(xué)化。來參考自己需要的教案吧!以下是小編收集整理的勾股定理教案,供大家參考借鑒,希望可以幫助到有需要的朋友。

勾股定理教案合集15篇

勾股定理教案1

  一、教學(xué)目標(biāo)

  (一)教學(xué)知識點

  1.掌握勾股定理,了解利用拼圖驗證勾股定理的方法.

  2.運用勾股解決一些實際問題.

  (二)能力訓(xùn)練要求

  1.學(xué)會用拼圖的方法驗證勾股定理,培養(yǎng)學(xué)生的創(chuàng)新能力和解決實際問題的能力.

  2.在拼圖過程中,鼓勵學(xué)生大膽聯(lián)想,培養(yǎng)學(xué)生數(shù)形結(jié)合的意識.

  (三)情感與價值觀要求

  利用拼圖的方法驗證勾股定理,是我國古代數(shù)學(xué)家的一大貢獻(xiàn).借助對學(xué)生進(jìn)行愛國主義教育.并在拼圖的過程中獲得學(xué)習(xí)數(shù)學(xué)的快樂,提高學(xué)習(xí)數(shù)學(xué)的興趣.

  二.教學(xué)重、難點

  重點:勾股定理的證明及其應(yīng)用.

  難點:勾股定理的證明.

  三.教學(xué)方法

  教師引導(dǎo)和學(xué)生自主探索相結(jié)合的方法.

  在用拼圖的方法驗證勾股定理的過程中.教師要引導(dǎo)學(xué)生善于聯(lián)想,將形的問題與數(shù)的問題聯(lián)系起來,讓學(xué)生自主探索,大膽地聯(lián)系前面知識,推導(dǎo)出勾股定理,并自己嘗試用勾股定理解決實際問題.

  四.教具準(zhǔn)備

  1.每個學(xué)生準(zhǔn)備一張硬紙板;

  2.投影片三張:

  第一張:問題串(記作1.1.2 A);

  第二張:議一議(記作1.1.2 B);

  第三張:例題(記作1.1.2 C).

  五.教學(xué)過程

 、.創(chuàng)設(shè)問題情景,引入新課

  [師]我們曾學(xué)習(xí)過整式的運算,其中平方差公式(a+b)(a-b)=a2-b2;完全平方公式(ab)2=a22ab+b2是非常重要的內(nèi)容.誰還能記得當(dāng)時這兩個公式是如何推出的?

  [生]利用多項式乘以多項式的法則從公式的.左邊就可以推出右邊.例如(a+b)(a-b)=a2-ab+ab-b2=a2-b2,所以平方差公式是成立的.

  [生]還可以用拼圖的方法來推出.例如:(a+b)2=a2+2ab+b2.我們可以用一個邊長為a的正方形,一個邊長為b的正方形,兩個長和寬分別為a和b的長方形可拼成如下圖所示的邊長為(a+b)的正方形,那么這個大的正方形的面積可以表示為(a+b)2;又可以表示為a2+2ab+b2.所以(a+b)2=a2+2ab+b2.

勾股定理教案2

  一、學(xué)生知識狀況分析

  本節(jié)將利用勾股定理及其逆定理解決一些具體的實際問題,其中需要學(xué)生了解空間圖形、對一些空間圖形進(jìn)行展開、折疊等活動。學(xué)生在學(xué)習(xí)七年級上第一章時對生活中的立體圖形已經(jīng)有了一定的認(rèn)識,并從事過相應(yīng)的實踐活動,因而學(xué)生已經(jīng)具備解決本課問題所需的知識基礎(chǔ)和活動經(jīng)驗基礎(chǔ)。

  二、教學(xué)任務(wù)分析

  本節(jié)是義務(wù)教育課程標(biāo)準(zhǔn)北師大版實驗教科書八年級(上)第一章《勾股定理》第3節(jié)。具體內(nèi)容是運用勾股定理及其逆定理解決簡單的實際問題。當(dāng)然,在這些具體問題的解決過程中,需要經(jīng)歷幾何圖形的抽象過程,需要借助觀察、操作等實踐活動,這些都有助于發(fā)展學(xué)生的分析問題、解決問題能力和應(yīng)用意識;一些探究活動具體一定的難度,需要學(xué)生相互間的合作交流,有助于發(fā)展學(xué)生合作交流的能力。

  三、本節(jié)課的教學(xué)目標(biāo)是:

  1.通過觀察圖形,探索圖形間的關(guān)系,發(fā)展學(xué)生的空間觀念.

  2.在將實際問題抽象成數(shù)學(xué)問題的過程中,提高分析問題、解決問題的能力及滲透數(shù)學(xué)建模的思想.

  3.在利用勾股定理解決實際問題的過程中,體驗數(shù)學(xué)學(xué)習(xí)的實用性.

  利用數(shù)學(xué)中的建模思想構(gòu)造直角三角形,利用勾股定理及逆定理,解決實際問題是本節(jié)課的重點也是難點.

  四、教法學(xué)法

  1.教學(xué)方法

  引導(dǎo)—探究—歸納

  本節(jié)課的教學(xué)對象是初二學(xué)生,他們的參與意識教強,思維活躍,為了實現(xiàn)本節(jié)課的教學(xué)目標(biāo),我力求以下三個方面對學(xué)生進(jìn)行引導(dǎo):

  (1)從創(chuàng)設(shè)問題情景入手,通過知識再現(xiàn),孕育教學(xué)過程;

  (2)從學(xué)生活動出發(fā),順勢教學(xué)過程;

  (3)利用探索研究手段,通過思維深入,領(lǐng)悟教學(xué)過程.

  2.課前準(zhǔn)備

  教具:教材、電腦、多媒體課件.

  學(xué)具:用矩形紙片做成的圓柱、剪刀、教材、筆記本、課堂練習(xí)本、文具.

  五、教學(xué)過程分析

  本節(jié)課設(shè)計了七個環(huán)節(jié).第一環(huán)節(jié):情境引入;第二環(huán)節(jié):合作探究;第三環(huán)節(jié):做一做;第四環(huán)節(jié):小試牛刀;第五環(huán)節(jié):舉一反三;第六環(huán)節(jié):交流小結(jié);第七環(huán)節(jié):布置作業(yè).

  1.3勾股定理的應(yīng)用:課后練習(xí)

  一、問題引入:

  1、勾股定理:直角三角形兩直角邊的________等于________。如果用a,b和c表示直角三角形的兩直角邊和斜邊,那么________。

  2、勾股定理逆定理:如果三角形三邊長a,b,c滿足________,那么這個三角形是直角三角形

  1.3勾股定理的'應(yīng)用:同步檢測

  1.為迎接新年的到來,同學(xué)們做了許多拉花布置教室,準(zhǔn)備召開新年晚會,小劉搬來一架高2.5米的木梯,準(zhǔn)備把拉花掛到2.4米高的墻上,則梯腳與墻角距離應(yīng)為( )

  A.0.7米B.0.8米C.0.9米D.1.0米

  2.小華和小剛兄弟兩個同時從家去同一所學(xué)校上學(xué),速度都是每分鐘走50米.小華從家到學(xué)校走直線用了10分鐘,而小剛從家出發(fā)先去找小明再到學(xué)校(均走直線),小剛到小明家用了6分鐘,小明家到學(xué)校用了8分鐘,小剛上學(xué)走了個( )

  A.銳角彎B.鈍角彎C.直角彎D.不能確定

  3.如圖,是一個圓柱形飲料罐,底面半徑是5,高是12,上底面中心有一個小圓孔,則一條到達(dá)底部的直吸管在罐內(nèi)部分a的長度(罐壁的厚度和小圓孔的大小忽略不計)范圍是( )

  A.5≤a≤12 B.5≤a≤13 C.12≤a≤13 D.12≤a≤15

  4.一個木工師傅測量了一個等腰三角形木板的腰、底邊和高的長,但他把這三個數(shù)據(jù)與其它的數(shù)據(jù)弄混了,請你幫助他找出來,是第( )組.

  A.13,12,12 B.12,12,8 C.13,10,12 D.5,8,4

勾股定理教案3

  [教學(xué)分析]

  勾股定理是揭示三角形三條邊數(shù)量關(guān)系的一條非常重要的性質(zhì),也是幾何中最重要的定理之一。它是解直角三角形的主要依據(jù)之一,同時在實際生活中具有廣泛的用途,“數(shù)學(xué)源于生活,又用于生活”正是這章書所體現(xiàn)的主要思想。教材在編寫時注意培養(yǎng)學(xué)生的動手操作能力和分析問題的能力,通過實際操作,使學(xué)生獲得較為直觀的印象;通過聯(lián)系比較、探索、歸納,幫助學(xué)生理解勾股定理,以利于進(jìn)行正確的應(yīng)用。

  本節(jié)教科書從畢達(dá)哥拉斯觀察地面發(fā)現(xiàn)勾股定理的傳說談起,讓學(xué)生通過觀察計算一些以直角三角形兩條直角邊為邊長的小正方形的面積與以斜邊為邊長的正方形的面積的關(guān)系,發(fā)現(xiàn)兩直角邊為邊長的小正方形的面積的和,等于以斜邊為邊長的正方形的面積,從而發(fā)現(xiàn)勾股定理,這時教科書以命題的形式呈現(xiàn)了勾股定理。關(guān)于勾股定理的證明方法有很多,教科書正文中介紹了我國古人趙爽的證法。之后,通過三個探究欄目,研究了勾股定理在解決實際問題和解決數(shù)學(xué)問題中的應(yīng)用,使學(xué)生對勾股定理的作用有一定的認(rèn)識。

  [教學(xué)目標(biāo)]

  一、 知識與技能

  1、探索直角三角形三邊關(guān)系,掌握勾股定理,發(fā)展幾何思維。

  2、應(yīng)用勾股定理解決簡單的實際問題

  3學(xué)會簡單的合情推理與數(shù)學(xué)說理

  二、 過程與方法

  引入兩段中西關(guān)于勾股定理的史料,激發(fā)同學(xué)們的興趣,引發(fā)同學(xué)們的思考。通過動手操作探索與發(fā)現(xiàn)直角三角形三邊關(guān)系,經(jīng)歷小組協(xié)作與討論,進(jìn)一步發(fā)展合作交流能力和數(shù)學(xué)表達(dá)能力,并感受勾股定理的應(yīng)用知識。

  三、 情感與態(tài)度目標(biāo)

  通過對勾股定理歷史的了解,感受數(shù)學(xué)文化,激發(fā)學(xué)習(xí)興趣;在探究活動中,學(xué)生親自動手對勾股定理進(jìn)行探索與驗證,培養(yǎng)學(xué)生的合作交流意識和探索精神,以及自主學(xué)習(xí)的.能力。

  四、 重點與難點

  1、探索和證明勾股定理

  2熟練運用勾股定理

  [教學(xué)過程]

  一、創(chuàng)設(shè)情景,揭示課題

  1、教師展示圖片并介紹第一情景

  以中國最早的一部數(shù)學(xué)著作——《周髀算經(jīng)》的開頭為引,介紹周公向商高請教數(shù)學(xué)知識時的對話,為勾股定理的出現(xiàn)埋下伏筆。

  周公問:“竊聞乎大夫善數(shù)也,請問古者包犧立周天歷度.夫天不可階而升,地不可得尺寸而度,請問數(shù)安從出?”商高答:“數(shù)之法出于圓方,圓出于方,方出于矩,矩出九九八十一,故折矩以為勾廣三,股修四,徑隅五。既方其外,半之一矩,環(huán)而共盤.得成三、四、五,兩矩共長二十有五,是謂積矩。故禹之所以治天下者,此數(shù)之所由生也。”

  2、教師展示圖片并介紹第二情景

  畢達(dá)哥拉斯是古希臘著名的數(shù)學(xué)家。相傳在2500年以前,他在朋友家做客時,發(fā)現(xiàn)朋友家用地磚鋪成的地面反映了直角三角形的某種特性。

  二、師生協(xié)作,探究問題

  1、現(xiàn)在請你也動手?jǐn)?shù)一下格子,你能有什么發(fā)現(xiàn)嗎?

  2、等腰直角三角形是特殊的直角三角形,一般的直角三角形是否也有這樣的特點呢?

  3、你能得到什么結(jié)論嗎?

  三、得出命題

  勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊長為c,那么,即直角三角形兩直角邊的平方和等于斜邊的平方。解釋: 由于我國古代把直角三角形中較短的直角邊稱為勾,較長的邊稱為股,斜邊稱為弦,所以,把它叫做勾股定理。

  四、勾股定理的證明

  趙爽弦圖的證法(圖2)

  第一種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的直角三角形圍在外面形成的。因為邊長為 的正方形面積加上4個直角三角形的面積等于外圍正方形的面積,所以可以列出等式 ,化簡得 。

  第二種方法:邊長為 的正方形可以看作是由4個直角邊分別為 、 ,斜邊為 的

  角三角形拼接形成的(虛線表示),不過中間缺出一個邊長為 的正方形“小洞”。

  因為邊長為 的正方形面積等于4個直角三角形的面積加上正方形“小洞”的面積,所以可以列出等式 ,化簡得 。

  這種證明方法很簡明,很直觀,它表現(xiàn)了我國古代數(shù)學(xué)家趙爽高超的證題思想和對數(shù)學(xué)的鉆研精神,是我們中華民族的驕傲。

  五、應(yīng)用舉例,拓展訓(xùn)練,鞏固反饋。

  勾股定理的靈活運用勾股定理在實際的生產(chǎn)生活當(dāng)中有著廣泛的應(yīng)用。勾股定理的發(fā)現(xiàn)和使用解決了許多生活中的問題,今天我們就來運用勾股定理解決一些問題,你可以嗎?試一試。

  例題:小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘長和46厘米寬,他覺得一定是售貨員搞錯了,你同意他的想法嗎?你能解釋這是為什么嗎?

  六、歸納總結(jié)1、內(nèi)容總結(jié):探索直角三角形兩直角邊的平方和等于斜邊的平方,利于勾股定理,解決實際問題

  2、方法歸納:數(shù)方格看圖找關(guān)系,利用面積不變的方法。用直角三角形三邊表示正方形的面積觀察歸納注意畫一個直角三角形表示正方形面積,再次驗證自己的發(fā)現(xiàn)。

  七、討論交流

  讓學(xué)生發(fā)表自己的意見,提出他們模糊不清的概念,給他們一個梳理知識的機(jī)會,通過提示性的引導(dǎo),讓學(xué)生對勾股定理的概念豁然開朗,為后面勾股定理的應(yīng)用打下基礎(chǔ)。

  我們班的同學(xué)很聰明。大家很快就通過數(shù)格子發(fā)現(xiàn)了勾股定理的規(guī)律。還有什么地方不懂的嗎?跟大家一起來交流一下。請同學(xué)們課后在反思天地中都發(fā)表一下自己的學(xué)習(xí)心得。

勾股定理教案4

 一、利用勾股定理進(jìn)行計算

  1.求面積

  例1:如圖1,在等腰△ABC中,腰長AB=10cm,底BC=16cm,試求這個三角形面積。

  析解:若能求出這個等腰三角形底邊上的高,就可以求出這個三角形面積。而由等腰三角形"三線合一"性質(zhì),可聯(lián)想作底邊上的高AD,此時D也為底邊的中點,這樣在Rt△ABD中,由勾股定理得AD2=AB2-BD2=102-82=36,所以AD=6cm,所以這個三角形面積為×BC×AD=×16×6=48cm2。

  2.求邊長

  例2:如圖2,在△ABC中,∠C=135?,BC=,AC=2,試求AB的長。

  析解:題中沒有直角三角形,不能直接用勾股定理,可考慮過點B作BD⊥AC,交AC的延長線于D點,構(gòu)成Rt△CBD和Rt△ABD。在Rt△CBD中,因為∠ACB=135?,所以∠BCB=45?,所以BD=CD,由BC=,根據(jù)勾股定理得BD2+CD2=BC2,得BD=CD=1,所以AD=AC+CD=3。在Rt△ABD中,由勾股定理得AB2=AD2+BD2=32+12=10,所以AB=。

  點評:這兩道題有一個共同的特征,都沒有現(xiàn)成的直角三角形,都是通過添加適當(dāng)?shù)妮o助線,巧妙構(gòu)造直角三角形,借助勾股定理來解決問題的,這種解決問題的方法里蘊含著數(shù)學(xué)中很重要的轉(zhuǎn)化思想,請同學(xué)們要留心。

  二、利用勾股定理的逆定理判斷直角三角形

  例3:已知a,b,c為△ABC的三邊長,且滿足a2+b2+c2+338=10a+24b+26c。試判斷△ABC的形狀。

  析解:由于所給條件是關(guān)于a,b,c的一個等式,要判斷△ABC的形狀,設(shè)法求出式中的a,b,c的值或找出它們之間的'關(guān)系(相等與否)等,因此考慮利用因式分解將所給式子進(jìn)行變形。因為a2+b2+c2+338=10a+24b+26c,所以a2-10a+b2-24b+c2-26c+338=0,所以a2-10a+25+b2-24b+144+c2-26c+169=0,所以(a-5)2+(b-12)2+(c-13)2=0。因為(a-5)2≥0,(b-12)2≥0,(c-13)2≥0,所以a-5=0,b-12=0,c-13=0,即a=5,b=12,c=13。因為52+122=132,所以a2+b2=c2,即△ABC是直角三角形。

  點評:用代數(shù)方法來研究幾何問題是勾股定理的逆定理的"數(shù)形結(jié)合思想"的重要體現(xiàn)。

  三、利用勾股定理說明線段平方和、差之間的關(guān)系

  例4:如圖3,在△ABC中,∠C=90?,D是AC的中點,DE⊥AB于E點,試說明:BC2=BE2-AE2。

  析解:由于要說明的是線段平方差問題,故可考慮利用勾股定理,注意到∠C=∠BED=∠AED=90?及CD=AD,可連結(jié)BD來解決。因為∠C=90?,所以BD2=BC2+CD2。又DE⊥AB,所以∠BED=∠AED=90?,在Rt△BED中,有BD2=BE2+DE2。在Rt△AED中,有AD2=DE2+AE2。又D是AC的中點,所以AD=CD。故BC2+CD2=BC2+AD2=BC2+DE2+AE2=BE2+DE2,所以BE2=BC2+AE2,所以BC2=BE2-AE2。

  點評:若所給題目的已知或結(jié)論中含有線段的平方和或平方差關(guān)系時,則可考慮構(gòu)造直角三角形,利用勾股定理來解決問題。

勾股定理教案5

  教學(xué)目標(biāo)

  1.靈活應(yīng)用勾股定理及逆定理解決實際問題。

  2.進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識。

  重難點

  1.重點:靈活應(yīng)用勾股定理及逆定理解決實際問題。

  2.難點:靈活應(yīng)用勾股定理及逆定理解決實際問題。

  一、自主學(xué)習(xí)

  1、若三角形的三邊是 ⑴1、、2; ⑵; ⑶32,42,52⑷9,40,41;

 、桑╩+n)2-1,2(m+n),(m+n)2+1;則構(gòu)成的是直角三角形的有( )

  A.2個 B.3個?????C.4個??????D.5個

  2、已知:在△ABC中,∠A、∠B、∠C的對邊分別是a、b、c,分別為下列長度,判斷該三角形是否是直角三角形?并指出那一個角是直角?

 、臿=9,b=41,c=40; ⑵a=15,b=16,c=6; ⑶a=2,b=,c=4;

  二、交流展示

  例1(P33例2)某港口P位于東西方向的海岸線上.“遠(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里,它們離開港口一個半小時后分別位于Q、R處,并相距30海里. 如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?

  分析:⑴了解方位角,及方位名詞;⑵依題意畫出圖形;⑶依題意可求PR,PQ,QR;

  ⑷根據(jù)勾股定理 的逆定理,求∠QPR;⑸求∠RPN。

  小結(jié):讓學(xué)生養(yǎng)成“已知三邊求角,利用勾股定理的逆定理”的'意識。

  例2、一根30米長的細(xì)繩折成3段,圍成一個三角形,其中一條邊的長度比較短邊長7米,比較長邊短1米,請你試判斷這個三角形的形狀。

  分析:⑴若判斷三角形的形狀,先求三角形的三邊長;

 、圃O(shè)未知數(shù)列方程,求出三角形的三邊長;

 、歉鶕(jù)勾股定理的逆定理,判斷三角形是否為直角三角形。

  三、合作探究

  例3.如圖,小明的爸爸在魚池邊開了一塊四邊形土地種了一些蔬菜,爸爸讓小明計算一下土地的面積,以便計算一下產(chǎn)量。小明找了一卷米尺,測得AB=4米,BC=3米,CD=13米,DA=12米,又已知∠B=90°。

  四、達(dá)標(biāo)測試

  1.一根24米繩子,折成三邊為三個連續(xù)偶數(shù)的三角形,則三邊長分別為,此三角形的形狀為。

  2.小強在操場上向東走80m后,又走了60m,再走100m回到原地。小強在操場上向東走了80m后,又走60m的方向是。

  3.一根12米的電線桿AB,用鐵絲AC、AD固定,現(xiàn)已知用去鐵絲AC=15米,AD=13米,又測得地面上B、C兩點之間距離是9米,B、D兩點之間距離是5米,

  則電線桿和地面是否垂直,為什么?

  4.如圖,在我國沿海有一艘不明國籍的輪船進(jìn)入我國海域,我海軍甲、乙兩艘巡邏艇立即從相距13海里的A、B兩個基地前去攔截,六分鐘后同時到達(dá)C地將其攔截。已知甲巡邏艇每小時航行120海里,乙巡邏艇每小時航行50海里,航向為北偏西40°,問:甲巡邏艇的航向?

  五、教學(xué)反思

勾股定理教案6

  教學(xué)目標(biāo)

  知識與技能:

  了解勾股定理的一些證明方法,會簡單應(yīng)用勾股定理解決問題

  過程與方法:

  在充分觀察、歸納、猜想的基礎(chǔ)上,探究勾股定理,在探究的過程中,發(fā)展合情推理,體會數(shù)形結(jié)合、從特殊到一般等數(shù)學(xué)思想。

  情感態(tài)度價值觀:

  通過對我國古代研究勾股定理的成就介紹,培養(yǎng)學(xué)生的民族自豪感。

  教學(xué)過程

  1、創(chuàng)設(shè)情境

  問題1國際數(shù)學(xué)家大會是最高水平的全球性數(shù)學(xué)學(xué)科學(xué)術(shù)會議,被譽為數(shù)學(xué)界的“奧運會”。2002年在北京召開了第24屆國際數(shù)學(xué)家大會。下圖就是大會會徽的'圖案。你見過這個圖案嗎?它由哪些我們學(xué)習(xí)過的基本圖形組成?這個圖案有什么特別的含義?

  師生活動:教師引導(dǎo)學(xué)生尋找圖形中的直角三角形和正方形等,并引導(dǎo)學(xué)生發(fā)現(xiàn)直角三角形的全等關(guān)系,指出通過今天的學(xué)習(xí),就能理解會徽圖案的含義。

  設(shè)計意圖:本節(jié)課是本章的起始課,重視引言教學(xué),從國際數(shù)學(xué)家大會的會徽說起,設(shè)置懸念,引入課題。

  2、探究勾股定理

  觀看洋蔥數(shù)學(xué)中關(guān)于勾股定理引入的視頻,讓我們一起走進(jìn)神奇的數(shù)學(xué)世界

  問題2相傳2500多年前,畢達(dá)哥拉斯有一次在朋友家作客時,發(fā)現(xiàn)朋友家用轉(zhuǎn)鋪成的地面圖案反應(yīng)了直角三角形三邊的某種數(shù)量關(guān)系,請你觀察下圖,你從中發(fā)現(xiàn)了什么數(shù)量關(guān)系?

  師生活動:學(xué)生先獨立觀察思考一分鐘后,小組交流合作分析圖形中兩個藍(lán)色正方形與橙色正方形有哪些數(shù)量關(guān)系,教師參與學(xué)生的討論

  追問:由這三個正方形的邊長構(gòu)成的等腰直角三角形三條邊長之間又有怎么樣的關(guān)系?

  師生活動:教師引導(dǎo)學(xué)生發(fā)現(xiàn)正方形的面積等于邊長的平方,歸納出:等腰直角三角形兩條直角邊的平方和等于斜邊的平方。

  設(shè)計意圖:從最特殊的等腰直角三角形入手,便于學(xué)生觀察得到結(jié)論

  問題3:數(shù)學(xué)研究遵循從特殊到一般的數(shù)學(xué)思想,既然我們得到了等腰直角三角形三邊的這種特殊的數(shù)量關(guān)系,那我們不妨大膽猜測在一般的直角三角形(在下圖的方格紙中,每個方格的面積是1)中,這種特殊的數(shù)量關(guān)系也同樣成立。

  師生活動:學(xué)生獨立思考后小組討論,難點是如何證明求以斜邊為邊長的正方形的面積,可由師生共同總結(jié)得出可以通過割、補兩種方法,求出其面積。

勾股定理教案7

  重點、難點分析

  本節(jié)內(nèi)容的重點是勾股定理的逆定理及其應(yīng)用。它可用邊的關(guān)系判斷一個三角形是否為直角三角形。為判斷三角形的形狀提供了一個有力的依據(jù)。

  本節(jié)內(nèi)容的難點是勾股定理的逆定理的應(yīng)用。在用勾股定理的逆定理時,分不清哪一條邊作斜邊,因此在用勾股定理的逆定理判斷三角形的形狀時而出錯;另外,在解決有關(guān)綜合問題時,要將給的邊的數(shù)量關(guān)系經(jīng)過代數(shù)變化,最后達(dá)到一個目標(biāo)式,這種“轉(zhuǎn)化”對學(xué)生來講也是一個困難的地方。

  教法建議:

  本節(jié)課教學(xué)模式主要采用“互動式”教學(xué)模式及“類比”的教學(xué)方法。通過前面所學(xué)的垂直平分線定理及其逆定理,做類比對象,讓學(xué)生自己提出問題并解決問題。在課堂教學(xué)中營造輕松、活潑的課堂氣氛。通過師生互動、生生互動、學(xué)生與教材之間的互動,造成“情意共鳴,溝通信息,反饋流暢,思維活躍”,達(dá)到培養(yǎng)學(xué)生思維能力的目的。具體說明如下:

 。1)讓學(xué)生主動提出問題

  利用類比的學(xué)習(xí)方法,由學(xué)生將上節(jié)課所學(xué)習(xí)的勾股定理的逆命題書寫出來。這里分別找學(xué)生口述文字;用符號、圖形的形式板書逆命題的內(nèi)容。所有這些都由學(xué)生自己完成,估計學(xué)生不會感到困難。這樣設(shè)計主要是培養(yǎng)學(xué)生善于提出問題的習(xí)慣及能力。

 。2)讓學(xué)生自己解決問題

  判斷上述逆命題是否為真命題?對這一問題的解決,學(xué)生會感到有些困難,這里教師可做適當(dāng)?shù)狞c撥,但要盡可能的讓學(xué)生的發(fā)現(xiàn)和探索,找到解決問題的思路。

 。3)通過實際問題的解決,培養(yǎng)學(xué)生的數(shù)學(xué)意識。

  教學(xué)目標(biāo):

  1、知識目標(biāo):

 。1)理解并會證明勾股定理的逆定理;

 。2)會應(yīng)用勾股定理的逆定理判定一個三角形是否為直角三角形;

 。3)知道什么叫勾股數(shù),記住一些覺見的勾股數(shù)。

  2、能力目標(biāo):

 。1)通過勾股定理與其逆定理的比較,提高學(xué)生的辨析能力;

 。2)通過勾股定理及以前的知識聯(lián)合起來綜合運用,提高綜合運用知識的能力。

  3、情感目標(biāo):

 。1)通過自主學(xué)習(xí)的發(fā)展體驗獲取數(shù)學(xué)知識的感受;

  (2)通過知識的縱橫遷移感受數(shù)學(xué)的辯證特征。

  教學(xué)重點:

  勾股定理的逆定理及其應(yīng)用

  教學(xué)難點:

  勾股定理的逆定理及其應(yīng)用

  教學(xué)用具:

  直尺,微機(jī)

  教學(xué)方法:

  以學(xué)生為主體的討論探索法

  教學(xué)過程:

  1、新課背景知識復(fù)習(xí)(投影)

  勾股定理的內(nèi)容

  文字?jǐn)⑹觯ㄍ队帮@示)

  符號表述

  圖形(畫在黑板上)

  2、逆定理的'獲得

 。1)讓學(xué)生用文字語言將上述定理的逆命題表述出來

  (2)學(xué)生自己證明

  逆定理:如果三角形的三邊長 有下面關(guān)系:

  那么這個三角形是直角三角形

  強調(diào)說明:

 。1)勾股定理及其逆定理的區(qū)別

  勾股定理是直角三角形的性質(zhì)定理,逆定理是直角三角形的判定定理。

  (2)判定直角三角形的方法:

 、俳菫 、

 、诖怪、

  ③勾股定理的逆定理

  2、 定理的應(yīng)用(投影顯示題目上)

  例1 如果一個三角形的三邊長分別為

  則這三角形是直角三角形

  例2 如圖,已知:CD⊥AB于D,且有

  求證:△ACB為直角三角形。

  以上例題,分別由學(xué)生先思考,然后回答。師生共同補充完善。(教師做總結(jié))

  4、課堂小結(jié):

 。1)逆定理應(yīng)用時易出現(xiàn)的錯誤:分不清哪一條邊作斜邊(最大邊)

 。2)判定是否為直角三角形的一種方法:結(jié)合勾股定理和代數(shù)式、方程綜合運用。

  5、布置作業(yè):

  a、書面作業(yè)P131#9

  b、上交作業(yè):已知:如圖,△DEF中,DE=17,EF=30,EF邊上的中線DG=8

  求證:△DEF是等腰三角形

勾股定理教案8

  學(xué)習(xí)目標(biāo)

  1、通過拼圖,用面積的方法說明勾股定理的正確性.

  2.探索勾股定理的過程,發(fā)展合情推理的能力,體會數(shù)型結(jié)合的思想。

  重點難點

  或?qū)W習(xí)建議學(xué)習(xí)重點:用面積的方法說明勾股定理的正確.

  學(xué)習(xí)難點:勾股定理的應(yīng)用.

  學(xué)習(xí)過程教師

  二次備課欄

  自學(xué)準(zhǔn)備與知識導(dǎo)學(xué):

  這是1955年希臘為紀(jì)念一位數(shù)學(xué)家曾經(jīng)發(fā)行的郵票。

  郵票上的圖案是根據(jù)一個著名的數(shù)學(xué)定理設(shè)計的。

  學(xué)習(xí)交流與問題研討:

  1、探索

  問題:分別以圖中的直角三角形三邊為邊向三角形外

  作正方形,小方格的面積看做1,求這三個正方形的面積?

  S正方形BCED=S正方形ACFG=S正方形ABHI=

  發(fā)現(xiàn):

  2、實驗

  在下面的方格紙上,任意畫幾個頂點都在格點上的三角形;并分別以這個三角形的各邊為一邊向三角形外做正方形并計算出正方形的面積。

  請完成下表:

  S正方形BCEDS正方形ACFGS正方形ABHIS正方形BCED、S正方形ACFG、S正方形ABHI的關(guān)系

  112

  145

  41620

  91625

  發(fā)現(xiàn):

  如何用直角三角形的三邊長來表示這個結(jié)論?

  這個結(jié)論就是我們今天要學(xué)習(xí)的勾股定理:

  如圖:我國古代把直角三角形中,較短的直角邊叫做“勾”,較長的直角邊叫做“股”,斜邊叫做“弦”,所以勾股定理可表示為:弦股還可以表示為:或勾

  練習(xí)檢測與拓展延伸:

  練習(xí)1、求下列直角三角形中未知邊的長

  練習(xí)2、下列各圖中所示的線段的長度或正方形的'面積為多少。

  (注:下列各圖中的三角形均為直角三角形)

  例1、如圖,在四邊形中,∠,∠,,求.

  檢測:

  1、在Rt△ABC中,∠C=90°(1)若a=5,b=12,則c=________;

  (2)b=8,c=17,則S△ABC=________。

  2、在Rt△ABC中,∠C=90,周長為60,斜邊與一條直角邊之比為13∶5,則這個三角形三邊長分別是()

  A、5、4、3、;B、13、12、5;C、10、8、6;D、26、24、10

  3、若等腰三角形中相等的兩邊長為10cm,第三邊長為16cm,那么第三邊上的高為()

  A.12cmB.10cmC.8cmD.6cm

  4、要登上8m高的建筑物,為了安全需要,需使梯子底端離建筑物6m,至少需要多長的梯子?(畫出示意圖)

  5、飛機(jī)在空中水平飛行,某一時刻剛好飛到一個男孩頭頂正上方4千米處,過了20秒,飛機(jī)距離這個男孩5千米,飛機(jī)每小時飛行多少千米?

  課后反思或經(jīng)驗總結(jié):

  1、什么叫勾股定理;

  2、什么樣的三角形的三邊滿足勾股定理;

  3、用勾股定理解決一些實際問題。

勾股定理教案9

  教學(xué)目標(biāo)

  1、知識與技能目標(biāo):探索并理解直角三角形的三邊之間的數(shù)量關(guān)系,通過探究能夠發(fā)現(xiàn)直角三角形中兩個直角邊的平方和等于斜邊的平方和。

  2、過程與方法目標(biāo):經(jīng)歷用測量和數(shù)格子的辦法探索勾股定理的過程,進(jìn)一步發(fā)展學(xué)生的合情推理能力。

  3、情感態(tài)度與價值觀目標(biāo):通過本節(jié)課的學(xué)習(xí),培養(yǎng)主動探究的習(xí)慣,并進(jìn)一步體會數(shù)學(xué)與現(xiàn)實生活的緊密聯(lián)系。

  教學(xué)重點

  了解勾股定理的由來,并能用它來解決一些簡單的問題。

  教學(xué)難點

  勾股定理的.探究以及推導(dǎo)過程。

  教學(xué)過程

  一、創(chuàng)設(shè)問題情景、導(dǎo)入新課

  首先出示:投影1(章前的圖文)并介紹我國古代在勾股定理研究方面的貢獻(xiàn),結(jié)合課本第六頁談一談我國是最早了解勾股定理的國家之一,介紹商高(三千多年前周期的數(shù)學(xué)家)在勾股定理方面的貢獻(xiàn)。

  出示課件觀察后回答:

  1、觀察圖1—2,正方形A中有_______個小方格,即A的面積為______個單位。

  正方形B中有_______個小方格,即B的面積為______個單位。

  正方形C中有_______個小方格,即C的面積為______個單位。

  2、你是怎樣得出上面的結(jié)果的?

  3、在學(xué)生交流回答的基礎(chǔ)上教師進(jìn)一步設(shè)問:圖1—2中,A,B,C面積之間有什么關(guān)系?學(xué)生交流后得到結(jié)論:A+B=C。

  二、層層深入、探究新知

  1、做一做

  出示投影3(書中P3圖1—3)

  提問:(1)圖1—3中,A,B,C之間有什么關(guān)系?(2)從圖1—2,1—3中你發(fā)現(xiàn)什么?

  學(xué)生討論、交流后,得出結(jié)論:以三角形兩直角邊為邊的正方形的面積和,等于以斜邊為邊的正方形面積。

  2、議一議

  圖1—2、1—3中,你能用三角形的邊長表示正方形的面積嗎?

 。1)你能發(fā)現(xiàn)直角三角形三邊長度之間的關(guān)系嗎?在同學(xué)交流的基礎(chǔ)上,共同探討得出:直角三角形兩直角邊的平方和等于斜邊的平方。這就是著名的“勾股定理”。也就是說如果直角三角形的兩直角邊為a,b,斜邊為c那么。我國古代稱直角三角形的較短的直角邊為勾,較長的為股,斜邊為弦,這就是勾股定理的由來。

 。2)分別以5厘米和12厘米為直角邊做出一個直角三角形,并測量斜邊的長度(學(xué)生測量后回答斜邊長為13)請大家想一想(2)中的規(guī)律,對這個三角形仍然成立嗎?

  3、想一想

  我們常見的電視的尺寸:29英寸(74厘米)的電視機(jī),指的是屏幕的長嗎?還是指的是屏幕的寬?那他指什么呢?能否運用剛才所學(xué)的知識,檢驗一下電視劇的尺寸是否合格?

  三、鞏固練習(xí)。

  1、在圖1—1的問題中,折斷之前旗桿有多高?

  2、錯例辨析:△ABC的兩邊為3和4,求第三邊

  解:由于三角形的兩邊為3、4

  所以它的第三邊的c應(yīng)滿足

  =25即:c=5辨析:(1)要用勾股定理解題,首先應(yīng)具備直角三角形這個必不可少的條件,可本題三角形ABC并未說明它是否是直角三角形,所以用勾股定理就沒有依據(jù)。(2)若告訴△ABC是直角三角形,第三邊C也不一定是滿足,題目中并未交待C是斜邊。

  綜上所述這個題目條件不足,第三邊無法求得

  四、課堂小結(jié)

  鼓勵學(xué)生自己總結(jié)、談?wù)勛约罕竟?jié)課的收獲,以及自己對勾股定理的理解,老師加以糾正和補充。

  五、布置作業(yè)

勾股定理教案10

  一、全章要點

  1、勾股定理 直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)

  2、勾股定理的逆定理 如果三角形的三邊長:a、b、c,則有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。

  3、勾股定理的證明 常見方法如下:

  方法一: , ,化簡可證.

  方法二:

  四個直角三角形的面積與小正方形面積的和等于大正方形的面積.

  四個直角三角形的面積與小正方形面積的和為

  大正方形面積為 所以

  方法三: , ,化簡得證

  4、勾股數(shù) 記住常見的勾股數(shù)可以提高解題速度,如 ; ; ; ;8,15,17;9,40,41等

  二、經(jīng)典訓(xùn)練

  (一)選擇題:

  1. 下列說法正確的是( )

  A.若 a、b、c是△ABC的三邊,則a2+b2=c2;

  B.若 a、b、c是Rt△ABC的三邊,則a2+b2=c2;

  C.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2;

  D.若 a、b、c是Rt△ABC的三邊, ,則a2+b2=c2.

  2. △ABC的三條邊長分別是 、 、 ,則下列各式成立的是( )

  A. B. C. D.

  3.直角三角形中一直角邊的長為9,另兩邊為連續(xù)自然數(shù),則直角三角形的周長為( )

  A.121 B.120 C.90 D.不能確定

  4.△ABC中,AB=15,AC=13,高AD=12,則△ABC的周長為( )

  A.42 B.32 C.42 或 32 D.37 或 33

  (二)填空題:

  5.斜邊的邊長為 ,一條直角邊長為 的直角三角形的面積是 .

  6.假如有一個三角形是直角三角形,那么三邊 、 、 之間應(yīng)滿足 ,其中 邊是直角所對的邊;如果一個三角形的`三邊 、 、 滿足 ,那么這個三角形是 三角形,其中 邊是 邊, 邊所對的角是 .

  7.一個三角形三邊之比是 ,則按角分類它是 三角形.

  8. 若三角形的三個內(nèi)角的比是 ,最短邊長為 ,最長邊長為 ,則這個三角形三個角度數(shù)分別是 ,另外一邊的平方是 .

  9.如圖,已知 中, , , ,以直角邊 為直徑作半圓,則這個半圓的面積是 .

  10. 一長方形的一邊長為 ,面積為 ,那么它的一條對角線長是 .

  三、綜合發(fā)展:

  11.如圖,一個高 、寬 的大門,需要在對角線的頂點間加固一個木條,求木條的長.

  12.一個三角形三條邊的長分別為 , , ,這個三角形最長邊上的高是多少?

  13.如圖,小李準(zhǔn)備建一個蔬菜大棚,棚寬4m,高3m,長20m,棚的斜面用塑料薄膜遮蓋,不計墻的厚度,請計算陽光透過的最大面積.

  14.如圖,有一只小鳥在一棵高13m的大樹樹梢上捉蟲子,它的伙伴在離該樹12m,高8m的一棵小樹樹梢上發(fā)出友好的叫聲,它立刻以2m/s的速度飛向小樹樹梢,那么這只小鳥至少幾秒才可能到達(dá)小樹和伙伴在一起?

  15.如圖,長方體的長為15,寬為10,高為20,點 離點 的距離為5,一只螞蟻如果要沿著長方體的表面從點 爬到點 ,需要爬行的最短距離是多少?

  16.中華人民共和國道路交通管理條例規(guī)定:小汽車在城街路上行駛速度不得超過 km/h.如圖,,一輛小汽車在一條城市街路上直道行駛,某一時刻剛好行駛到路對面車速檢測儀正前方 m處,過了2s后,測得小汽車與車速檢測儀間距離為 m,這輛小汽車超速了嗎?

勾股定理教案11

  課題:

  勾股定理

  課型:

  新授課

  課時安排:

  1課時

  教學(xué)目的:

  一、知識與技能目標(biāo)理解和掌握勾股定理的內(nèi)容,能夠靈活運用勾股定理進(jìn)行計算,并解決一些簡單的實際問題。

  二、過程與方法目標(biāo)通過觀察分析,大膽猜想,并探索勾股定理,培養(yǎng)學(xué)生動手操作、合作交流、邏輯推理的能力。

  三、情感、態(tài)度與價值觀目標(biāo)了解中國古代的數(shù)學(xué)成就,激發(fā)學(xué)生愛國熱情;學(xué)生通過自己的努力探索出結(jié)論獲得成就感,培養(yǎng)探索熱情和鉆研精神;同時體驗數(shù)學(xué)的美感,從而了解數(shù)學(xué),喜歡幾何。

  教學(xué)重點:

  引導(dǎo)學(xué)生經(jīng)歷探索及驗證勾股定理的過程,并能運用勾股定理解決一些簡單的實際問題

  教學(xué)難點:

  用面積法方法證明勾股定理

  課前準(zhǔn)備:

  多媒體ppt,相關(guān)圖片

  教學(xué)過程:

 。ㄒ唬┣榫硨(dǎo)入

  1、多媒體課件放映圖片欣賞:勾股定理數(shù)形圖,1955年希臘發(fā)行的一枚紀(jì)念郵票,美麗的勾股樹,20xx年國際數(shù)學(xué)大會會標(biāo)等。通過圖形欣賞,感受數(shù)學(xué)之美,感受勾股定理的文化價值。

  2、多媒體課件演示FLASH小動畫片:某樓房三樓失火,消防隊員趕來救火,了解到每層樓高3米,消防隊員取來6.5米長的云梯,如果梯子的`底部離墻基的距離是2.5米,請問消防隊員能否進(jìn)入三樓滅火?已知一直角三角形的兩邊,如何求第三邊?學(xué)習(xí)了今天的這節(jié)課后,同學(xué)們就會有辦法解決了。

  (二)學(xué)習(xí)新課問題一是等腰直角三角形的情形(通過多媒體給出圖形),判斷外圍三個正方形面積有何關(guān)系?相傳2500年前,畢達(dá)哥拉斯(古希臘著名的哲學(xué)家、數(shù)學(xué)家、天文學(xué)家)有一次在朋友家做客時,發(fā)現(xiàn)朋友家里用磚鋪成的地面中反映了直角三角形三邊的某種數(shù)量關(guān)系。你能觀察圖中的地面,看看能發(fā)現(xiàn)什么?對于等腰直角三角形有這樣的性質(zhì):兩直邊的平方和等于斜邊的平方那么對于一般的直角三角形是否也有這樣的性質(zhì)呢?請大家畫一個任意的直角三角形,量一量,算一算。問題二是一般直角三角形的情形,判斷這時外圍三個正方形的面積是否也存在這種關(guān)系?通過這個觀察和驗算這個直角三角形外圍的三個正方形面積之間的關(guān)系,同學(xué)們發(fā)現(xiàn)了什么規(guī)律嗎?通過前面對兩個問題的驗證,可以得到勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

 。ㄈ╈柟叹毩(xí)1、如果一個直角三角形的兩條邊長分別是6厘米和8厘米,那么這個三角形的周長是多少厘米?2、解決課程開始時提出的情境問題。

 。ㄋ模┬〗Y(jié)

  1、背景知識介紹①《周髀算徑》中,西周的商高在公元一千多年前發(fā)現(xiàn)了“勾三股四弦五”這一規(guī)律;②康熙數(shù)學(xué)專著《勾股圖解》有五種求解直角三角形的方法,積求勾股法是他的獨創(chuàng)。

  2、通過這節(jié)課的學(xué)習(xí),你會寫方程了嗎?你有什么收獲和體會?

 。ㄎ澹┳鳂I(yè)練習(xí)18.1中的1、2、3題。板書設(shè)計:勾股定理:如果直角三角形的兩直角邊長分別為a、b,斜邊為c,那么a2+b2=c2。

勾股定理教案12

  教學(xué)課題:

  勾股定理的應(yīng)用

  教學(xué)時間

 。ㄈ掌、課時)

  教材分析

  學(xué)情分析

  教 學(xué)目標(biāo):

  能運用勾股定理及直角三角形的判定條件解決實際問題。

  在運用勾股定理解決實際問題的過程中,感受數(shù)學(xué)的“轉(zhuǎn)化” 思想(把解斜三角形問題轉(zhuǎn)化為解直角三角形的問題),進(jìn)一步發(fā)展有條理思考和有條理表達(dá)的能力,體會數(shù)學(xué)的應(yīng)用價值。

  教學(xué)準(zhǔn)備

  《數(shù)學(xué)學(xué)與練》

  集體備課意見和主要參考資料

  頁邊批注

  教學(xué)過程

  一、 新課導(dǎo)入

  本課時的教學(xué)內(nèi)容是勾股定理在實際中的應(yīng)用。除課本提供的情境外,教學(xué)中可以根據(jù)實際情況另行設(shè)計一些具體情境,也利用課本提供的素材組織數(shù)學(xué)活動。比如,把課本例2改編為開放式的問題情境:

  一架長為10m的梯子斜靠在墻上,梯子的頂端距地面的垂直距離為8m。如果梯子的頂端下滑0.5m,你認(rèn)為梯子的底端會發(fā)生什么變化?與同學(xué)交流 。

  創(chuàng)設(shè)學(xué)生身邊的問題情境,為每一個學(xué)生提供探索的空間,有利于發(fā)揮學(xué)生的主體性;這樣的問題學(xué)生常常會從自己的`生活經(jīng)驗出發(fā),產(chǎn)生不同的思考方法和結(jié)論(教學(xué)中學(xué)生可能的結(jié)論有:底端也滑動 0.5m;如果梯子的頂端滑到地面 上,梯子的頂端則滑動8m,估計梯子底端的滑動小于8m,所以梯子的頂端 下滑0.5m,它的底端的滑動小于0.5m;構(gòu)造直角三角形,運用勾股定理計算梯子滑動前、后底端到墻的垂直距離的差,得出梯子底端滑動約0.61m的結(jié)論等);通過與同學(xué)交流,完善各自的想法,有利于學(xué)生主動地把實際問題轉(zhuǎn)化為數(shù)學(xué)問題 ,從中感受用數(shù)學(xué)的眼光審視客觀世界的樂趣 。

  二、新課講授

  問題一 在上面的情境中,如果梯子的頂端下滑 1m,那么梯子的底端滑動多少米?

  組織學(xué)生嘗試用勾股定理解決問題,對有困難的學(xué)生教師給予及時的幫助和指導(dǎo)。

  問題二 從上面所獲得的信息中,你對梯子下滑的變化過程有進(jìn)一步的思考嗎?與同學(xué)交流。

  設(shè)計問題二促使學(xué)生能主動積 極地從數(shù)學(xué)的角度思考實際問題。教學(xué)中學(xué)生可能會有多種思考、比如,①這個變化過程中,梯子底端滑動的距離總比頂端下滑的距離大;②因為梯子頂端 下滑到地面時,頂端下滑了8m,而底端只滑動4m,所以這個變化過程中,梯子底端滑動的距離不一定比頂端下滑的距離大;③由勾股數(shù)可知,當(dāng)梯子頂端下滑到離地面的垂直距離為6m,即頂端下滑2m時,底端到墻的垂直距離是8m,即底端電滑動2m等。教學(xué)中不要把尋找規(guī)律作為這個探索活動的目標(biāo),應(yīng)讓學(xué)生進(jìn)行充分的.交流,使學(xué)生逐步學(xué)會運用數(shù)學(xué)的眼光去審視客觀世界,從不同的角度去思考問題,獲得一些研究問題的經(jīng)驗和方法、

  3、例題教學(xué)

  課本的例1是勾股定理的簡單應(yīng)用,教學(xué)中可根據(jù)教學(xué)的實際情況補充一些實際應(yīng)用問題,把課本習(xí)題2.7第4題作為補充例題。通過這個問題的討論,把“32+b2=c2”看作一個方程,設(shè)折斷處離地面x尺,依據(jù)問題給出的條件就把它轉(zhuǎn)化為熟悉的會解的一元二次方程32+x2=(10—x)2,從中可以讓學(xué)生感受數(shù)學(xué)的“轉(zhuǎn)化”思想,進(jìn)一步了解勾股定理的悠久歷史和我國古代人民的聰明才智、

  三、鞏固練習(xí)

  1、甲、乙兩人同時從同一地點出發(fā),甲往東走了4km,乙往南走了6km,這時甲、乙兩人相距__________km。

  2、如圖,一圓柱高8cm,底面半徑2cm,一只螞蟻從點A爬到點B處吃食,要爬行的最短路程( 取3)是( )。

 。ˋ)20cm (B)10cm (C)14cm (D)無法確定

  3、如圖,一塊草坪的形狀為四邊形ABCD,其中∠B=90°,AB=3m,BC=4m,CD=12m,AD=13m。求這塊草坪的面積。

  四、小結(jié)

  我們知道勾股定理揭示了直角三角形的三邊之間的數(shù)量關(guān)系,已知直角 三角形中的任意兩邊就可以依據(jù)勾股定理求出第三邊。從應(yīng)用勾股定理解決實際問題中,我們進(jìn)一步認(rèn)識到把直角三角形中三邊關(guān)系“a2+b2=c2”看成一個方程,只要 依據(jù)問題的條件把它轉(zhuǎn)化為我們會解的方程,就把解實際問題轉(zhuǎn)化為解方程。

勾股定理教案13

  一、內(nèi)容和內(nèi)容解析

  1。內(nèi)容

  應(yīng)用勾股定理及勾股定理的逆定理解決實際問題。

  2。內(nèi)容解析

  運用勾股定理的逆定理可以從三角形邊的數(shù)量關(guān)系來識別三角形的形狀,它是用代數(shù)方法來研究幾何圖形,也是向?qū)W生滲透“數(shù)形結(jié)合”這一數(shù)學(xué)思想方法的很好素材。綜合運用勾股定理及其逆定理能幫助我們解決實際問題。

  基于以上分析,可以確定本課的教學(xué)重點是靈活運用勾股定理的逆定理解決實際問題。

  二、目標(biāo)和目標(biāo)解析

  1。目標(biāo)

 。1)靈活應(yīng)用勾股定理及逆定理解決實際問題。

 。2)進(jìn)一步加深性質(zhì)定理與判定定理之間關(guān)系的認(rèn)識。

  2。目標(biāo)解析

  達(dá)成目標(biāo)(1)的標(biāo)志是學(xué)生通過合作、討論、動手實踐等方式,在應(yīng)用題中建立數(shù)學(xué)模型,準(zhǔn)確畫出幾何圖形,再熟練運用勾股定理逆定理判斷三角形狀及求邊長、面積、角度等;

  目標(biāo)(2)能先用勾股定理的逆定理判斷一個三角形是直角三角形,再用勾股定理及直角三角形的性質(zhì)進(jìn)行有關(guān)的計算和證明。

  三、教學(xué)問題診斷分析

  對于大部分學(xué)生將實際問題抽象成數(shù)學(xué)模型并進(jìn)行解析與應(yīng)用,有一定的困難,所以在教學(xué)時應(yīng)該注意啟發(fā)引導(dǎo)學(xué)生從實際生活中所遇到的問題出發(fā),鼓勵學(xué)生以勾股定理及逆定理的知識為載體建立數(shù)學(xué)模型,利用數(shù)學(xué)模型去解決實際問題。

  本課的教學(xué)難點是靈活運用勾股定理及逆定理解決實際問題。

  四、教學(xué)過程設(shè)計

  1。復(fù)習(xí)反思,引出課題

  問題1 通過前面的學(xué)習(xí),我們對勾股定理及其逆定理的知識有一定的了解,請說出勾股定理及其逆定理的內(nèi)容。

  師生活動:學(xué)生回答勾股定理的內(nèi)容“如果直角三角形的兩條直角邊長分別為,斜邊長為,那么;勾股定理的逆定理“如果三角形的'三邊長滿足,那么這個三角形是直角三角形。

  追問:你能用勾股定理及逆定理解決哪些問題?

  師生活動:學(xué)生通過思考舉手回答,教師板書課題。

  【設(shè)計意圖】通過復(fù)習(xí)勾股定理及其逆定理來引入本課時的學(xué)習(xí)任務(wù)——應(yīng)用勾股定理及逆定理解決有關(guān)實際問題。

  2。 點擊范例,以練促思

  問題2 某港口位于東西方向的海岸線上!斑h(yuǎn)航”號、“海天”號輪船同時離開港口,各自沿一固定方向航行,“遠(yuǎn)航”號每小時航行16海里,“海天”號每小時航行12海里。它們離開港口一個半小時后相距30海里。如果知道“遠(yuǎn)航”號沿東北方向航行,能知道“海天”號沿哪個方向航行嗎?

  師生活動:學(xué)生讀題,理解題意,弄清楚已知條件和需解決的問題,教師通過梯次性問題的展示,適時點撥,學(xué)生嘗試畫圖、估測、交流中分化難點完成解答。

  追問1:請同學(xué)們認(rèn)真審題,弄清已知是什么?解決的問題是什么?

  師生活動:學(xué)生通過思考舉手回答,教師在黑板上列出:已知兩種船的航速,它們的航行時間以及相距的路程, “遠(yuǎn)航”號的航向——東北方向;解決的問題是“海天”號的航向。

  追問2:你能根據(jù)題意畫出圖形嗎?

  師生活動:學(xué)生嘗試畫圖,教師在黑板上或多媒體中畫出示意圖。

  追問3:在所畫的圖中哪個角可以表示“海天”號的航向?圖中知道哪個角的度數(shù)?

  師生活動:學(xué)生小組討論交流回答問題“海天”號的航向只要能確定∠QPR的大小即可。組內(nèi)討論解答,小組代表展示解答過程,教師適時點評,多媒體展示規(guī)范解答過程。

  解:根據(jù)題意,

  因為

  ,即

  ,所以

  由“遠(yuǎn)航”號沿東北方向航行可知

  。因此

  ,即“海天”號沿西北方向航行。

  課堂練習(xí)1。 課本33頁練習(xí)第3題。

  課堂練習(xí)2。 在

  港有甲、乙兩艘漁船,若甲船沿北偏東

  方向以每小時8海里速度前進(jìn),乙船沿南偏東某方向以每小時15海里速度前進(jìn),1小時后甲船到達(dá)

  島,乙船到達(dá)

  島,且

  島與

  島相距17海里,你能知道乙船沿哪個方向航行嗎?

  【設(shè)計意圖】學(xué)生在規(guī)范化的解答過程及練習(xí)中,提升對勾股定理逆定理的認(rèn)識以及實際應(yīng)用的能力。

  3。 補充訓(xùn)練,鞏固新知

  問題3 實驗中學(xué)有一塊四邊形的空地

  若每平方米草皮需要200元,問學(xué)校需要投入多少資金購買草皮?

  師生活動:先由學(xué)生獨立思考。若學(xué)生有想法,則由學(xué)生先說思路,然后教師追問:你是怎么想到的?對學(xué)生思路中的合理成分進(jìn)行總結(jié);若學(xué)生沒有思路,教師可引導(dǎo)學(xué)生分析:從所要求的結(jié)果出發(fā)是要知道四邊形的面積,而四邊形被它的一條對角線分成兩個三角形,求出兩個三角形的面積和即可。啟發(fā)學(xué)生形成思路,最后由學(xué)生演板完成。

  【設(shè)計意圖】引導(dǎo)學(xué)生利用輔助線解決問題,進(jìn)一步養(yǎng)成利用勾股定理的逆定理解決實際問題的意識。

  4。 反思小結(jié),觀點提煉

  教師引導(dǎo)學(xué)生參照下面兩個方面,回顧本節(jié)課所學(xué)的主要內(nèi)容,進(jìn)行相互交流:

 。1)知識總結(jié):勾股定理以及逆定理的實際應(yīng)用;

 。2)方法歸納:數(shù)學(xué)建模的思想。

  【設(shè)計意圖】通過小結(jié),梳理本節(jié)課所學(xué)內(nèi)容,總結(jié)方法,體會思想。

  5。布置作業(yè)

  教科書34頁習(xí)題17。2第3題,第4題,第5題,第6題。

  五、目標(biāo)檢測設(shè)計

  1。小明在學(xué)校運動會上負(fù)責(zé)聯(lián)絡(luò),他先從檢錄處走了75米到達(dá)起點,又從起點向東走了100米到達(dá)終點,最后從終點走了125米,回到檢錄處,則他開始走的方向是(假設(shè)小明走的每段都是直線) ( )

  A。南北 B。東西 C。東北 D。西北

  【設(shè)計意圖】考查運用勾股定理的逆定理解決實際生活問題。

  2。甲、乙兩船同時從

  港出發(fā),甲船沿北偏東

  的方向,以每小時9海里的速度向

  島駛?cè),乙船沿另一個方向,以每小時12海里的速度向

  島駛?cè)ィ?小時后兩船同時到達(dá)了目的地。如果兩船航行的速度不變,且

  兩島相距45海里,那么乙船航行的方向是南偏東多少度?

  【設(shè)計意圖】考查建立數(shù)學(xué)模型,準(zhǔn)確畫出幾何圖形,運用勾股定理的逆定理解決實際生活問題。

  3。如圖是一塊四邊形的菜地,已知

  求這塊菜地的面積。

  【設(shè)計意圖】考查利用勾股定理及逆定理將不規(guī)則圖形轉(zhuǎn)化為直角三角形,巧妙地求解。

勾股定理教案14

  一、教學(xué)目標(biāo)

  通過對幾種常見的勾股定理驗證方法,進(jìn)行分析和欣賞。理解數(shù)

  學(xué)知識之間的內(nèi)在聯(lián)系,體會數(shù)形結(jié)合的思想方法,進(jìn)一步感悟勾股定理的文化價值。

  通過拼圖活動,嘗試驗證勾股定理,培養(yǎng)學(xué)生的動手實踐和創(chuàng)新能力。

  (3)讓學(xué)生經(jīng)歷自主探究、合作交流、觀察比較、計算推理、動手操作等過程,獲得一些研究問題的方法,取得成功和克服困難的經(jīng)驗,培養(yǎng)學(xué)生良好的思維品質(zhì),增進(jìn)他們數(shù)學(xué)學(xué)習(xí)的信心。

  二、教學(xué)的重、難點

  重點:探索和驗證勾股定理的過程

  難點:

  (1)“數(shù)形結(jié)合”思想方法的理解和應(yīng)用

  通過拼圖,探求驗證勾股定理的新方法

  三、學(xué)情分析

  八年級的學(xué)生已具備一定的生活經(jīng)驗,對新事物容易產(chǎn)生興趣,動手實踐能力也比較強,在班級上已初步形成合作交流,勇于探索與實踐的良好班風(fēng),估計本節(jié)課的學(xué)習(xí)中學(xué)生能夠在教師的引導(dǎo)和點撥下自主探索歸納勾股定理。

  四、教學(xué)程序分析

 。ㄒ唬⿲(dǎo)入新課

  介紹勾股世界

  兩千多年前,古希臘有個畢達(dá)哥拉斯學(xué)派,他們首先發(fā)現(xiàn)了勾股定理,因此在國外人們通常稱勾股定理為畢達(dá)哥拉斯定理。為了紀(jì)念畢達(dá)哥拉斯學(xué)派,1955年希臘曾經(jīng)發(fā)行了一枚紀(jì)念郵票。

  我國是最早了解勾股定理的國家之一。早在三千多年前,周朝數(shù)學(xué)家商高就提出,將一根直尺折成一個直角,如果勾等于三,股等于四,那么弦就等于五,即“勾三、股四、弦五”,它被記載于我國古代著名的數(shù)學(xué)著作《周髀算經(jīng)》中。

 。ǘ┲v解新課

  1、探索活動一:

  觀察下圖,并回答問題:

  (1)觀察圖1

  正方形A中含有

  個小方格,即A的面積是

  個單位面積;

  正方形B中含有

  個小方格,即B的面積是

  個單位面積;

  正方形C中含有

  個小方格,即C的`面積是

  個單位面積。

  (2)在圖2、圖3中,正方形A、B、C中各含有多少個小方格?它們的面積各是多少?你是如何得到上述結(jié)果的?與同伴交流。

  (3)請將上述結(jié)果填入下表,你能發(fā)現(xiàn)正方形A,B,C,的面積關(guān)系嗎?

  A的面積

  (單位面積)

  B的面積

  (單位面積)

  C的面積

  (單位面積)

  圖1

  9

  9

  18

  圖2

  4

  4

  8

  2、探索活動二:

  (1)觀察圖3,圖4

  并填寫下表:

  A的面積

  (單位面積)

  B的面積

  (單位面積)

  C的面積

  (單位面積)

  圖3

  16

  9

  25

  圖4

  4

  9

  13

  你是怎樣得到上面結(jié)果的?與同伴交流。

  (2)三個正方形A,B,C的面積之間的關(guān)系?

  3、議一議(合作交流,驗證發(fā)現(xiàn))

  (1)你能發(fā)現(xiàn)直角三角形三邊長度之間存在什么關(guān)系嗎?

  勾股定理:如果直角三角形兩直角邊分別為a、b,斜邊為c

  ,那么a2+b2=c2。

  即直角三角形兩直角邊的平方和等于斜邊的平方。

  (2)我們怎么證明這個定理呢?

  教師指導(dǎo)第一種證明方法,學(xué)生合作探究第二種證明方法。

  可得:

  想一想:大正方形的面積該怎樣表示?

  想一想:這四個直角三角形還能怎樣拼?

  可得:

  4、例題分析

  如圖,一根電線桿在離地面5米處斷裂,電線桿頂部落在離電線桿底部12米處,電線桿折斷之前有多高?

  解:∵,

  ∴在中,

  ,根據(jù)勾股定理,

  ∴電線桿折斷之前的高度=BC+AB=5米+13米=18米

 。ㄈ┱n堂小結(jié)

  勾股定理從邊的角度刻畫了直角三角形的又一個特征.人類對勾股定理的研究已有近3000年的歷史,在西方,勾股定理又被稱為“畢達(dá)哥拉斯定理”、“百牛定理”、“驢橋定理”等等

 。

 。ㄋ模┎贾米鳂I(yè)

  收集有關(guān)勾股定理的證明方法,下節(jié)課展示、交流.

  五、板書設(shè)計

  勾股定理的探索與證明

  做一做

  勾股定理

  議一議

 。ㄖ苯侨切蔚闹苯沁叿謩e為a、b,斜邊為c,則a2+b2=c2)

  六、課后反思

  《新課程標(biāo)準(zhǔn)》指出:“數(shù)學(xué)教學(xué)是數(shù)學(xué)活動的教學(xué)。”數(shù)學(xué)實驗在現(xiàn)階段的數(shù)學(xué)教學(xué)中還沒有普及與推廣,實際上,通過學(xué)生的合作探究、動手實踐、歸納證明等活動,讓數(shù)學(xué)課堂生動起來,也讓學(xué)生感覺數(shù)學(xué)是可以動手做實驗的,提高了學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣與激情。本節(jié)課,我充分利用學(xué)生動手能力強、表現(xiàn)欲高的特點,在充裕的時間里,放手讓學(xué)生動手操作,自己歸納與分析。最后得出結(jié)論。我認(rèn)為本節(jié)課是成功的,一方面體現(xiàn)了學(xué)生的主體地位,另一方面讓實驗走進(jìn)了數(shù)學(xué)課堂,真正體現(xiàn)了實驗的巨大作用。

勾股定理教案15

  一、教學(xué)目標(biāo)

  (一)知識目標(biāo)

  1、創(chuàng)設(shè)情境引出問題,激起學(xué)生探索直角三角形三邊的關(guān)系的興趣。

  2、讓學(xué)生帶著問題體驗勾股定理的探索過程,并正確運用勾股定理解決相關(guān)問題。

  (二)能力目標(biāo)

  1、培養(yǎng)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的意識和能力。

  2、能把已有的數(shù)學(xué)知識運用于勾股定理的探索過程。

  3、能熟練掌握勾股定理及其變形公式,并會根據(jù)圖形找出直角三角形及其三邊,從而正確運用勾股定理及其變形公式于圖形解決相關(guān)問題。 (三)情感目標(biāo)

  1、培養(yǎng)學(xué)生的自主探索精神,提高學(xué)生合作交流能力和解決問題的能力。

  2、讓學(xué)生感受數(shù)學(xué)文化的價值和中國傳統(tǒng)數(shù)學(xué)的成就,激發(fā)學(xué)生的愛國熱情,培養(yǎng)學(xué)生的民族自豪感,教育學(xué)生奮發(fā)圖強、努力學(xué)習(xí)。

  二、教學(xué)重點

  通過圖形找出直角三角形三邊之間的關(guān)系,并正確運用勾股定理及其變形公式解決相關(guān)問題。

  三、教學(xué)難點

  運用已掌握的相關(guān)數(shù)學(xué)知識探索勾股定理。

  四、教學(xué)過程

  (一)創(chuàng)設(shè)情境,引出問題

  想一想:

  小明媽媽買了一部29英寸(74厘米)的電視機(jī),小明量了電視機(jī)的屏幕后,發(fā)現(xiàn)屏幕只有58厘米長和46厘米寬,他覺得一定是售貨員搞錯了。你同意他的想法嗎?你能解釋這是為什么嗎?

  要解決這個問題,必須掌握這節(jié)課的內(nèi)容。這節(jié)課我們要探討的是直角三角形的三邊有什么關(guān)系。

  - 1 -

  (二) 探索交流,得出新知

  探討之前我們一起來回憶一下直角三角形的三邊:

  如圖,在Rt △ABC 中,∠C=90° ∠C 所對的邊AB :斜邊c ∠A 所對的邊BC :直角邊a ∠B 所對的邊AC :直角邊b

  問題:在直角三角形中,a 、b 、c 三條邊之間到底存在著怎樣的`關(guān)系呢? (1)我們先來探討等腰直角三角形的三邊之間的關(guān)系。

  這個關(guān)系2500年前已經(jīng)有數(shù)學(xué)家發(fā)現(xiàn)了,今天我們把當(dāng)時的情景重現(xiàn),A

  C

  a

  B

  請同學(xué)們也來看一看、找一找。

  如圖

  數(shù)學(xué)家畢達(dá)哥拉斯的發(fā)現(xiàn):S A +SB =SC

  即:a 2+b2=c2

  也就是說:在等腰直角三角形中,兩直角邊的平方和等于斜邊的平方。

  議一議:如果是一般的直角三角形,兩直角邊的平方和是否還會等于斜邊的平方? 如圖

  分析: SA +SB =SC 是否成立?

  (1)正方形A 中含有 個小方格,即S A = 個單位面積。 (2)正方形B 中含有 個小方格,即S B = 個單位面積。 (3)由上可得:S A +SB = 個單位面積 問題:正方形C 的面積要如何求呢?與同伴進(jìn)行交流。 方法一:

  “補”成一個邊長為整數(shù)格的大正方形,再減去四個直角邊為整數(shù)格的三角形 方法二:分割成四個直角邊為整數(shù)格的三角形,再加上一個小方格。 綜上:

  我們得出:S A +SB =SC

  即:a +b=c

  2

  2

  2

  C

  - 2 -

  a

  B

  也就是說:在一般的直角三角形中,兩直角邊的平方和等于斜邊的平方。

  概括:

  勾股定理:在直角三角形中,兩直角邊的平方和等于斜邊的平方

  數(shù)學(xué)語言描述:

  如圖,在Rt △ABC 中,a 2+b2=c2

  (用多媒體簡單介紹勾股定理的名稱由來、中國古代的數(shù)學(xué)成就及勾股定理的“無字證明”) (三)應(yīng)用新知,解決問題

  例1:求出下列直角三角形中未知邊x 的長度 5

  注意:要根據(jù)圖表找出未知邊是斜邊還是直角邊,勾股定理要用對。

  從上面這兩道例題,我們知道了在直角三角形中,任意已知兩邊,可以求第三邊。 即勾股定理的變形公式: 如圖,在Rt △ABC 中

  (1)若已知a ,b 則求c 的公式為:c =(2)若已知a ,c 則求b 的公式為:b =(3)若已知b ,c 則求a 的公式為:a =

  a +b c -a c -b

  22

  22

  2

  C

  a

  B

  2

  例2: 如圖,在直角三角形ABC 中, ∠C=900, A

  (1) 已知: a=5, b=12, 求c;

  (2) 已知: b=8,c=10 , 求(3) 已知: a=

  3, c=2, 求 請同學(xué)們利用這節(jié)課學(xué)到的勾股定理及推論解決我們課前提出的問題:

  電視屏幕:

  解:在Rt △ABC 中,AB=46厘米,BC=58厘米

  由勾股定理得:AC=

  ?

  D

  A

  46AB

  2

  +BC

  2

  2

  =46+58

  2

  ≈74(厘米)

  ∴不同意小明的想法。

  - 3 -

  58厘米

  C

  (四)歸納總結(jié)

  (1)這節(jié)課你學(xué)到了什么知識?

  ①勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。 ②在直角三角形中,任意已知兩邊,可以用勾股定理求第三邊。 (2) 運用“勾股定理”應(yīng)注意什么問題? ①要利用圖形找到未知邊所在的直角三角形; ②看清未知邊是所在直角三角形的哪一邊; ③勾股定理要用對。

  (五)練習(xí)鞏固

  (1)、如圖,受臺風(fēng)“麥莎”影響,一棵樹在離地面8米處斷裂, 樹的頂部落在離樹跟底部6米處,這棵樹折斷前有多高?

  (2)、學(xué)校有一塊長方形的花圃,經(jīng)常有同學(xué)為了少走幾步而走捷徑,于是在草坪上開辟了一條“新路”,他們這樣走少走了______步.

  (每兩步約為1米) 3 (3)、已知:Rt △ABC 中,AB =4,AC =3, 則BC 的長為___________。 (六)作業(yè)

  1. A、B 、C 組:課本第69、70頁,習(xí)題18.1 第1, 2,3題. 2. A、B :練習(xí)冊33、34頁

  3.A :課本第71頁“閱讀與思考”,了解勾股定理的多種證法。

【勾股定理教案】相關(guān)文章:

勾股定理教案05-30

《勾股定理》說課稿01-07

《勾股定理》的說課稿01-18

勾股定理說課稿15篇02-27

《勾股定理逆定理》教學(xué)反思06-25

八年級勾股定理教學(xué)反思04-17

高中教案教案03-05

小班教案小班教案03-10

教案幼兒中班教案02-15