初中數(shù)學(xué)教案
作為一名為他人授業(yè)解惑的教育工作者,通常需要用到教案來輔助教學(xué),通過教案準(zhǔn)備可以更好地根據(jù)具體情況對教學(xué)進程做適當(dāng)?shù)谋匾恼{(diào)整。那么問題來了,教案應(yīng)該怎么寫?以下是小編收集整理的初中數(shù)學(xué)教案,希望對大家有所幫助。
初中數(shù)學(xué)教案1
。ㄒ唬┙滩姆治
1、知識結(jié)構(gòu)
2、重點、難點分析
重點:
找出命題的題設(shè)和結(jié)論.因為找出一個命題的題設(shè)和結(jié)論,是對該命題深刻理解的前提,而對命題理解能力是我們今后研究數(shù)學(xué)必備的能力,也是研究其它學(xué)科能力的基礎(chǔ).
難點:
找出一個命題的題設(shè)和結(jié)論.因為理解和掌握一個命題,一定要分清它的題設(shè)和結(jié)論,所以找出一個命題的題設(shè)和結(jié)論是十分重要的問題.但有些命題的題設(shè)和結(jié)論不明顯.例如,“對頂角相等”,“等角的余角相等”等.一些沒有寫成“如果那么”形式的命題,學(xué)生往往搞不清哪是題設(shè),哪是結(jié)論,又沒有一個通用的方法可以套用,所以分清題設(shè)和結(jié)論是教學(xué)的一個難點.
(二)教學(xué)建議
1、教師在教學(xué)過程中,組織或引導(dǎo)學(xué)生從具體到抽象,結(jié)合學(xué)生熟悉的事例,來理解命題的概念、找出一個命題的題設(shè)和結(jié)論,并能判斷一些簡單命題的真假.
2、命題是數(shù)學(xué)中一個非常重要的概念,雖然高中階段我們還要學(xué)習(xí),但對于程度好的A層學(xué)生還要理解:
。1)假命題可分為兩類情況:
、兕}設(shè)只有一種情形,并且結(jié)論是錯誤的,例如,“1+3=7”就是一個錯誤的命題.
、陬}設(shè)有多種情形,其中至少有一種情形的結(jié)論是錯誤的.
例如,“內(nèi)錯角互補,兩直線平行”這個命題的題設(shè)可分為兩種情形:
第一種情形是兩個內(nèi)錯角都等于90°,這時兩直線平行;
第二種情形是兩個內(nèi)錯角不都等于90°,這時兩直線不平行.
整體說來,這是錯誤的命題.
。2)是否是命題:
命題的定義包括兩層涵義:
、倜}必須是一個完整的句子;
、谶@個句子必須對某件事情做出肯定或者否定的判斷.即命題是判斷某一件事情的句子.在語法上,這樣的句子叫做陳述句,它由“題設(shè)+結(jié)論”構(gòu)成.
另外也有一些句子不是陳述句,例如,祈使句(也叫做命令句)“過直線AB外一點作該直線的`平行線.”疑問句“∠A是否等于∠B?”感嘆句“竟然得到5>9的結(jié)果!”以上三個句子都不是命題.
。3)命題的組成
每個命題都是由題設(shè)、結(jié)論兩部分組成.題設(shè)是已知事項;結(jié)論是由已知事項推出的事項.命題常寫成“如果,那么”的形式.具有這種形式的命題中,用“如果”開始的部分是題設(shè),用“那么”開始的部分是結(jié)論.
有些命題,沒有寫成“如果,那么”的形式,題設(shè)和結(jié)論不明顯.對于這樣的命題,要經(jīng)過分折才能找出題設(shè)和結(jié)論,也可以將它們改寫成“如果那么”的形式.
另外命題的題設(shè)(條件)部分,有時也可用“已知”或者“若”等形式表述;命題的結(jié)論部分,有時也可用“求證”或“則”等形式表述.
初中數(shù)學(xué)教案2
問題描述:
初中數(shù)學(xué)教學(xué)案例
初中的,隨便那個年級.20xx字.案例和反思
1個回答 分類:數(shù)學(xué) 20xx-11-30
問題解答:
我來補答
2.3 平行線的性質(zhì)
一、教材分析:
本節(jié)課是人民教育出版社義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書(五四學(xué)制)七年級上冊第2章 第3節(jié) 平行線的性質(zhì),它是平行線及直線平行的繼續(xù),是后面研究平移等內(nèi)容的基礎(chǔ),是“空間與圖形”的重要組成部分.
二、教學(xué)目標(biāo):
知識與技能:掌握平行線的性質(zhì),能應(yīng)用性質(zhì)解決相關(guān)問題.
數(shù)學(xué)思考:在平行線的性質(zhì)的探究過程中,讓學(xué)生經(jīng)歷觀察、比較、聯(lián)想、分析、歸納、猜想、概括的全過程.
解決問題:通過探究平行線的性質(zhì),使學(xué)生形成數(shù)形結(jié)合的數(shù)學(xué)思想方法,以及建模能力、創(chuàng)新意識和創(chuàng)新精神.
情感態(tài)度與價值觀:在探究活動中,讓學(xué)生獲得親自參與研究的情感體驗,從而增強學(xué)生學(xué)習(xí)數(shù)學(xué)的熱情和勇于探索、鍥而不舍的精神.
三、教學(xué)重、難點:
重點:平行線的性質(zhì)
難點:“性質(zhì)1”的探究過程
四、教學(xué)方法:
“引導(dǎo)發(fā)現(xiàn)法”與“動像探索法”
五、教具、學(xué)具:
教具:多媒體課件
學(xué)具:三角板、量角器.
六、教學(xué)媒體:大屏幕、實物投影
七、教學(xué)過程:
。ㄒ唬﹦(chuàng)設(shè)情境,設(shè)疑激思:
1.播放一組幻燈片.內(nèi)容:①火車行駛在鐵軌上;②游泳池;③橫格紙.
2.聲音:日常生活中我們經(jīng)常會遇到平行線,你能說出直線平行的條件嗎?
學(xué)生活動:
思考回答.①同位角相等兩直線平行;②內(nèi)錯角相等兩直線平行;③同旁內(nèi)角互補兩直線平行;
教師:首先肯定學(xué)生的回答,然后提出問題.
問題:若兩直線平行,那么同位角、內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系呢?
引出課題——平行線的性質(zhì).
(二)數(shù)形結(jié)合,探究性質(zhì)
1.畫圖探究,歸納猜想
任意畫出兩條平行線(a‖b),畫一條截線c與這兩條平行線相交,標(biāo)出8個角(如圖).
問題一:指出圖中的同位角,并度量這些角,把結(jié)果填入下表:
第一組
第二組
第三組
第四組
同位角
∠1
∠5
角的度數(shù)
數(shù)量關(guān)系
學(xué)生活動:畫圖——度量——填表——猜想
結(jié)論:兩直線平行,同位角相等.
問題二:再畫出一條截線d,看你的猜想結(jié)論是否仍然成立?
學(xué)生:探究、討論,最后得出結(jié)論:仍然成立.
2.教師用《幾何畫板》課件驗證猜想
3.性質(zhì)1.兩條直線被第三條直線所截,同位角相等.(兩直線平行,同位角相等)
。ㄈ┮晁伎,培養(yǎng)創(chuàng)新
問題三:請判斷內(nèi)錯角、同旁內(nèi)角各有什么關(guān)系?
學(xué)生活動:獨立探究——小組討論——成果展示.
教師活動:引導(dǎo)學(xué)生說理.
因為a‖b 因為a‖b
所以∠1=∠2 所以∠1=∠2
又 ∠1=∠3 又 ∠1+∠4=180°
所以∠2=∠3 所以∠2+∠4=180°
語言敘述:
性質(zhì)2 兩條直線被第三條直線所截,內(nèi)錯角相等.
。▋芍本平行,內(nèi)錯角相等)
性質(zhì)3 兩條直線被第三條直線所截,同旁內(nèi)角互補.
。▋芍本平行,同旁內(nèi)角互補)
。ㄋ模⿲嶋H應(yīng)用,優(yōu)勢互補
1.(搶答)
。1)如圖,平行線AB、CD被直線AE所截
、偃簟1 = 110°,則∠2 = °.理由:.
、谌簟1 = 110°,則∠3 = °.理由:.
、廴簟1 = 110°,則∠4 = °.理由:.
。2)如圖,由AB‖CD,可得( )
(A)∠1=∠2 (B)∠2=∠3
。–)∠1=∠4 (D)∠3=∠4
。3)如圖,AB‖CD‖EF,
那么∠BAC+∠ACE+∠CEF=( )
(A) 180°(B)270° (C)360° (D)540°
。4)誰問誰答:如圖,直線a‖b,
如:∠1=54°時,∠2= .
學(xué)生提問,并找出回答問題的同學(xué).
2.(討論解答)
如圖是一塊梯形鐵片的殘余部分,量得∠A=100°,
∠B=115°,求梯形另外兩角分別是多少度?
。ㄎ澹└爬ù鎯Γㄐ〗Y(jié))
1.平行線的性質(zhì)1、2、3;
2.用“運動”的觀點觀察數(shù)學(xué)問題;
3.用數(shù)形結(jié)合的方法來解決問題.
。┳鳂I(yè) 第69頁 2、4、7.
八、教學(xué)反思:
、俳痰霓D(zhuǎn)變:本節(jié)課教師的角色從知識的`傳授者轉(zhuǎn)變?yōu)閷W(xué)生學(xué)習(xí)的組織者、引導(dǎo)者、合作者與共同研究者.在引導(dǎo)學(xué)生畫圖、測量、發(fā)現(xiàn)結(jié)論后,利用幾何畫板直觀地、動態(tài)地展示同位角的關(guān)系,激發(fā)學(xué)生自覺地探究數(shù)學(xué)問題,體驗發(fā)現(xiàn)的樂趣.
、趯W(xué)的轉(zhuǎn)變:學(xué)生的角色從學(xué)會轉(zhuǎn)變?yōu)闀䦟W(xué).本節(jié)課學(xué)生不是停留在學(xué)會課本知識的層面上,而是站在研究者的角度深入其境.
③課堂氛圍的轉(zhuǎn)變:整節(jié)課以“流暢、開放、合作、‘隱’導(dǎo)”為基本特征,教師對學(xué)生的思維活動減少干預(yù),教學(xué)過程呈現(xiàn)一種比較流暢的特征,整節(jié)課學(xué)生與學(xué)生、學(xué)生與教師之間以“對話”、“討論”為出發(fā)點,以互助、合作為手段,以解決問題為目的,讓學(xué)生在一個較為寬松的環(huán)境中自主選擇獲得成功的方向,判斷發(fā)現(xiàn)的價值.
初中數(shù)學(xué)教案3
教材分析
立體圖形的翻折問題是高二《代數(shù)》(下)中立體幾何的一個學(xué)習(xí)內(nèi)容,它融會貫通于各種立體幾何和幾何體中,對學(xué)生進一步理解立體圖形起著至關(guān)重要的作用。立體圖形的翻折是從學(xué)生生活周圍熟悉的物體入手,使學(xué)生進一步認識立體圖形于平面圖形的關(guān)系;不僅要讓學(xué)生了解幾何體可由平面圖形折疊而成,更重要的是讓學(xué)生通過觀察、思考和自己動手操作、經(jīng)歷和體驗圖形的變化過程,使學(xué)生了解研究立體圖形的方法。
教學(xué)重點
了解平面圖形于折疊后的立體圖形之間的關(guān)系,找到變化過程中的不變量。
教學(xué)難點
轉(zhuǎn)化思想的運用及發(fā)散思維的培養(yǎng)。
學(xué)生分析
學(xué)生在前面已經(jīng)對一些簡單幾何體有了一定的認識,對于求解空間角及空間距離已具備了一定的能力,并且在班級中已初步形成合作交流,敢于探索與實踐的良好習(xí)慣。學(xué)生間相互評價、相互提問的互動的氣氛較濃。
設(shè)計理念
根據(jù)教育課程改革的具體目標(biāo),結(jié)合“注重開放與生成,構(gòu)建充滿生命活力的課堂教學(xué)運行體系”的要求,改變課程過于注重知識傳授的傾向,強調(diào)形成積極生動的學(xué)習(xí)態(tài)度,關(guān)注學(xué)生的學(xué)習(xí)興趣和經(jīng)驗,實施開放式教學(xué),讓學(xué)生主動參與學(xué)習(xí)活動,并引導(dǎo)學(xué)生在課堂活動中感悟知識的生成、發(fā)展與變化。
教學(xué)目標(biāo)
1、使學(xué)生掌握翻折問題的解題方法,并會初步應(yīng)用。
2、培養(yǎng)學(xué)生的動手實踐能力。在實踐過程中,使學(xué)生提高對立體圖形的分析能力,并在設(shè)疑的同時培養(yǎng)學(xué)生的發(fā)散思維。
3、通過平面圖形與折疊后的立體圖形的對比,向?qū)W生滲透事物間的變化與聯(lián)系觀點,在解題過程中,使學(xué)生理解,將立體圖形中的問題化歸到平面圖形中去解決的轉(zhuǎn)化思想。
教學(xué)流程
一、創(chuàng)設(shè)問題情境,引導(dǎo)學(xué)生觀察、設(shè)想、導(dǎo)入課題。
1、如圖(圖略),是一個正方體的展開圖,在原正方體中,有下列命題
。1)AB與EF所在直線平行
。2)AB與CD所在直線異面
。3)MN與EF所在直線成60度
。4)MN與CD所在直線互相垂直其中正確命題的序號是
2、引入課題----翻折
二、學(xué)生通過直觀感知、操作確認等實踐活動,加強對圖形的認識和感受(引導(dǎo)學(xué)生在解題的過程中如何突破難點,從而體現(xiàn)在平面圖形中求解一些不變量對于解空間問題的重要性)。
1、給學(xué)生一個展示自我的空間和舞臺,讓學(xué)生自己講解。教師根據(jù)學(xué)生的講解進一步提出問題。
。1)線段AE與EF的夾角為什么不是60度呢?
。2)AE與FG所成角呢?
(3)AE與GC所成角呢?
。4)在此正四棱柱上若有一小蟲從A點爬到C點最短路徑是什么?經(jīng)過各面呢?
。ㄍㄟ^對發(fā)散問題的提出培養(yǎng)學(xué)生的培養(yǎng)精神及轉(zhuǎn)化的教學(xué)思想方法,讓學(xué)生體會折疊圖與展開圖的不同應(yīng)用。)
2、讓學(xué)生觀察電腦演示折疊過程后,再親自動手折疊,針對問題做出回答。
。1)E、F分別處于G1G2、G2G3的什么位置?
。2)選擇哪種擺放方式更利于求解體積呢?
。3)如何求G點到面PEF的距離呢?
。4)PG與面PEF所成角呢?
。5)面GEF與面PEF所成角呢?
。▽W(xué)生會發(fā)現(xiàn)這幾個問題可在同一個直角三角形中找到答案,然后讓學(xué)生在折紙中找到這個三角形的位置,既而發(fā)現(xiàn)折疊過程中的不變量。)
3、演示MN的'運動過程,讓學(xué)生觀察分析解題過程強調(diào)證PN垂直AB的困難性。與學(xué)生共同品位解出這道2002高考題的喜悅的同時,引導(dǎo)學(xué)生用上題的思路能否更快捷地解出此題呢?
。▽W(xué)生大膽想象,并通過模型制作確認想象結(jié)果的正確性,從而開辟一條簡捷的翻折思想解題思路。)
三、小結(jié)
1、畫平面圖,并折前圖與折后圖中的字母盡量保持一致。
2、尋找立體圖形中的不變量到平面圖形中求解是關(guān)鍵。
3、注意培養(yǎng)轉(zhuǎn)化思想和發(fā)散思維。
。ㄍㄟ^提問方式引導(dǎo)學(xué)生小結(jié)本節(jié)主要知識及學(xué)習(xí)活動,養(yǎng)成學(xué)習(xí)、總結(jié)、學(xué)習(xí)的良好學(xué)習(xí)習(xí)慣,發(fā)散自我評價的作用,培養(yǎng)學(xué)生的語言表達能力。)
四、課外活動
1、完成課上未解決的問題。
2、對與1題折成正三棱柱結(jié)果會怎樣?對于2題改變E、F兩點位置剪成正三棱柱呢?
。ㄍㄟ^課外活動學(xué)習(xí)本節(jié)知識內(nèi)容,培養(yǎng)學(xué)生的發(fā)散思維。)
課后反思
本課設(shè)計中,有梯度性的先安排三個小題,讓學(xué)生經(jīng)歷先動手、思考、預(yù)習(xí)這一學(xué)習(xí)過程,然后在課堂上給學(xué)生一個充分展示自我的空間,并且適時發(fā)問的同時幫助學(xué)生找到解決方法。歸納總結(jié)解翻折問題的技巧和作為解題方法的優(yōu)越性。在實施開放式教學(xué)的過程中,注重引導(dǎo)學(xué)生在課堂活動過程中感悟知識的生成、發(fā)展與變化,培養(yǎng)學(xué)生主動探索、敢于實踐、善于發(fā)現(xiàn)的科學(xué)精神以及合作交流的精神和創(chuàng)新意識,將創(chuàng)新的教材、創(chuàng)新的教法與創(chuàng)新的課堂環(huán)境有機地結(jié)合起來,將學(xué)生自主學(xué)習(xí)與創(chuàng)新意識的培養(yǎng)落到實處。
初中數(shù)學(xué)教案4
知識技能目標(biāo)
1、理解反比例函數(shù)的圖象是雙曲線,利用描點法畫出反比例函數(shù)的圖象,說出它的性質(zhì);
2、利用反比例函數(shù)的圖象解決有關(guān)問題。
過程性目標(biāo)
1、經(jīng)歷對反比例函數(shù)圖象的觀察、分析、討論、概括過程,會說出它的性質(zhì);
2、探索反比例函數(shù)的圖象的性質(zhì),體會用數(shù)形結(jié)合思想解數(shù)學(xué)問題。
教學(xué)過程
一、創(chuàng)設(shè)情境
上節(jié)的練習(xí)中,我們畫出了問題1中函數(shù)的圖象,發(fā)現(xiàn)它并不是直線。那么它是怎么樣的曲線呢?本節(jié)課,我們就來討論一般的反比例函數(shù)(k是常數(shù),k≠0)的圖象,探究它有什么性質(zhì)。
二、探究歸納
1、畫出函數(shù)的圖象。
分析畫出函數(shù)圖象一般分為列表、描點、連線三個步驟,在反比例函數(shù)中自變量x≠0。
解
1、列表:這個函數(shù)中自變量x的取值范圍是不等于零的一切實數(shù),列出x與y的對應(yīng)值:
2、描點:用表里各組對應(yīng)值作為點的坐標(biāo),在直角坐標(biāo)系中描出在京各點點(—6,—1)、(—3,—2)、(—2,—3)等。
3、連線:用平滑的曲線將第一象限各點依次連起來,得到圖象的第一個分支;用平滑的曲線將第三象限各點依次連起來,得到圖象的另一個分支。這兩個分支合起來,就是反比例函數(shù)的圖象。
上述圖象,通常稱為雙曲線(hyperbola)。
提問這兩條曲線會與x軸、y軸相交嗎?為什么?
學(xué)生試一試:畫出反比例函數(shù)的圖象(學(xué)生動手畫反比函數(shù)圖象,進一步掌握畫函數(shù)圖象的步驟)。
學(xué)生討論、交流以下問題,并將討論、交流的結(jié)果回答問題。
1、這個函數(shù)的圖象在哪兩個象限?和函數(shù)的圖象有什么不同?
2、反比例函數(shù)(k≠0)的圖象在哪兩個象限內(nèi)?由什么確定?
3、聯(lián)系一次函數(shù)的性質(zhì),你能否總結(jié)出反比例函數(shù)中隨著自變量x的增加,函數(shù)y將怎樣變化?有什么規(guī)律?
反比例函數(shù)有下列性質(zhì):
。1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
。2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
注
1、雙曲線的兩個分支與x軸和y軸沒有交點;
2、雙曲線的兩個分支關(guān)于原點成中心對稱。
以上兩點性質(zhì)在上堂課的問題1和問題2中反映了怎樣的實際意義?
在問題1中反映了汽車比自行車的速度快,小華乘汽車比騎自行車到鎮(zhèn)上的時間少。
在問題2中反映了在面積一定的情況下,飼養(yǎng)場的一邊越長,另一邊越小。
三、實踐應(yīng)用
例1若反比例函數(shù)的圖象在第二、四象限,求m的值。
分析由反比例函數(shù)的定義可知:,又由于圖象在二、四象限,所以m+1<0,由這兩個條件可解出m的值。
解由題意,得解得。
例2已知反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,求一次函數(shù)y=kx—k的圖象經(jīng)過的象限。
分析由于反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,因此k<0,而一次函數(shù)y=kx—k中,k<0,可知,圖象過二、四象限,又—k>0,所以直線與y軸的交點在x軸的上方。
解因為反比例函數(shù)(k≠0),當(dāng)x>0時,y隨x的增大而增大,所以k<0,所以一次函數(shù)y=kx—k的圖象經(jīng)過一、二、四象限。
例3已知反比例函數(shù)的圖象過點(1,—2)。
。1)求這個函數(shù)的解析式,并畫出圖象;
。2)若點A(—5,m)在圖象上,則點A關(guān)于兩坐標(biāo)軸和原點的對稱點是否還在圖象上?
分析(1)反比例函數(shù)的圖象過點(1,—2),即當(dāng)x=1時,y=—2。由待定系數(shù)法可求出反比例函數(shù)解析式;再根據(jù)解析式,通過列表、描點、連線可畫出反比例函數(shù)的圖象;
。2)由點A在反比例函數(shù)的圖象上,易求出m的值,再驗證點A關(guān)于兩坐標(biāo)軸和原點的對稱點是否在圖象上。
解(1)設(shè):反比例函數(shù)的解析式為:(k≠0)。
而反比例函數(shù)的圖象過點(1,—2),即當(dāng)x=1時,y=—2。
所以,k=—2。
即反比例函數(shù)的解析式為:。
。2)點A(—5,m)在反比例函數(shù)圖象上,所以,
點A的坐標(biāo)為。
點A關(guān)于x軸的對稱點不在這個圖象上;
點A關(guān)于y軸的對稱點不在這個圖象上;
點A關(guān)于原點的'對稱點在這個圖象上;
例4已知函數(shù)為反比例函數(shù)。
(1)求m的值;
。2)它的圖象在第幾象限內(nèi)?在各象限內(nèi),y隨x的增大如何變化?
。3)當(dāng)—3≤x≤時,求此函數(shù)的最大值和最小值。
解(1)由反比例函數(shù)的定義可知:解得,m=—2。
。2)因為—2<0,所以反比例函數(shù)的圖象在第二、四象限內(nèi),在各象限內(nèi),y隨x的增大而增大。
。3)因為在第個象限內(nèi),y隨x的增大而增大,
所以當(dāng)x=時,y最大值=;
當(dāng)x=—3時,y最小值=。
所以當(dāng)—3≤x≤時,此函數(shù)的最大值為8,最小值為。
例5一個長方體的體積是100立方厘米,它的長是y厘米,寬是5厘米,高是x厘米。
。1)寫出用高表示長的函數(shù)關(guān)系式;
(2)寫出自變量x的取值范圍;
(3)畫出函數(shù)的圖象。
解(1)因為100=5xy,所以。
(2)x>0。
。3)圖象如下:
說明由于自變量x>0,所以畫出的反比例函數(shù)的圖象只是位于第一象限內(nèi)的一個分支。
四、交流反思
本節(jié)課學(xué)習(xí)了畫反比例函數(shù)的圖象和探討了反比例函數(shù)的性質(zhì)。
1、反比例函數(shù)的圖象是雙曲線(hyperbola)。
2、反比例函數(shù)有如下性質(zhì):
。1)當(dāng)k>0時,函數(shù)的圖象在第一、三象限,在每個象限內(nèi),曲線從左向右下降,也就是在每個象限內(nèi)y隨x的增加而減少;
(2)當(dāng)k<0時,函數(shù)的圖象在第二、四象限,在每個象限內(nèi),曲線從左向右上升,也就是在每個象限內(nèi)y隨x的增加而增加。
五、檢測反饋
1、在同一直角坐標(biāo)系中畫出下列函數(shù)的圖象:
(1);(2)。
2、已知y是x的反比例函數(shù),且當(dāng)x=3時,y=8,求:
。1)y和x的函數(shù)關(guān)系式;
。2)當(dāng)時,y的值;
。3)當(dāng)x取何值時,?
3、若反比例函數(shù)的圖象在所在象限內(nèi),y隨x的增大而增大,求n的值。
4、已知反比例函數(shù)經(jīng)過點A(2,—m)和B(n,2n),求:
。1)m和n的值;
。2)若圖象上有兩點P1(x1,y1)和P2(x2,y2),且x1<0
初中數(shù)學(xué)教案5
今天小編為大家精心整理了一篇有關(guān)初中數(shù)學(xué)教案之公式的相關(guān)內(nèi)容,以供大家閱讀!
教學(xué)設(shè)計示例一——公式
教學(xué)目標(biāo)
1.了解公式的意義,使學(xué)生能用公式解決簡單的實際問題;
2.初步培養(yǎng)學(xué)生觀察、分析及概括的能力;
3.通過本節(jié)課的教學(xué),使學(xué)生初步了解公式來源于實踐又反作用于實踐。
教學(xué)建議
一、教學(xué)重點、難點
重點:通過具體例子了解公式、應(yīng)用公式.
難點:從實際問題中發(fā)現(xiàn)數(shù)量之間的關(guān)系并抽象為具體的公式,要注意從中反應(yīng)出來的歸納的思想方法。
二、重點、難點分析
人們從一些實際問題中抽象出許多常用的、基本的數(shù)量關(guān)系,往往寫成公式,以便應(yīng)用。如本課中梯形、圓的面積公式。應(yīng)用這些公式時,首先要弄清楚公式中的字母所表示的意義,以及這些字母之間的數(shù)量關(guān)系,然后就可以利用公式由已知數(shù)求出所需的未知數(shù)。具體計算時,就是求代數(shù)式的值了。有的公式,可以借助運算推導(dǎo)出來;有的公式,則可以通過實驗,從得到的反映數(shù)量關(guān)系的一些數(shù)據(jù)(如數(shù)據(jù)表)出發(fā),用數(shù)學(xué)方法歸納出來。用這些抽象出的具有一般性的公式解決一些問題,會給我們認識和改造世界帶來很多方便。
三、知識結(jié)構(gòu)
本節(jié)一開始首先概述了一些常見的公式,接著三道例題循序漸進的講解了公式的直接應(yīng)用、公式的先推導(dǎo)后應(yīng)用以及通過觀察歸納推導(dǎo)公式解決一些實際問題。整節(jié)內(nèi)容滲透了由一般到特殊、再由特殊到一般的辨證思想。
四、教法建議
1.對于給定的可以直接應(yīng)用的公式,首先在給出具體例子的前提下,教師創(chuàng)設(shè)情境,引導(dǎo)學(xué)生清晰地認識公式中每一個字母、數(shù)字的意義,以及這些數(shù)量之間的對應(yīng)關(guān)系,在具體例子的基礎(chǔ)上,使學(xué)生參與挖倔其中蘊涵的思想,明確公式的應(yīng)用具有普遍性,達到對公式的靈活應(yīng)用。
2.在教學(xué)過程中,應(yīng)使學(xué)生認識有時問題的解決并沒有現(xiàn)成的公式可套,這就需要學(xué)生自己嘗試探求數(shù)量之間的關(guān)系,在已有公式的基礎(chǔ)上,通過分析和具體運算推導(dǎo)新公式。
3.在解決實際問題時,學(xué)生應(yīng)觀察哪些量是不變的,哪些量是變化的,明確數(shù)量之間的對應(yīng)變化規(guī)律,依據(jù)規(guī)律列出公式,再根據(jù)公式進一步地解決問題。這種從特殊到一般、再從一般到特殊認識過程,有助于提高學(xué)生分析問題、解決問題的能力。
教學(xué)設(shè)計示例二——公式
一、教學(xué)目標(biāo)
。ㄒ唬┲R教學(xué)點
1.使學(xué)生能利用公式解決簡單的實際問題.
2.使學(xué)生理解公式與代數(shù)式的關(guān)系.
。ǘ┠芰τ(xùn)練點
1.利用數(shù)學(xué)公式解決實際問題的能力.
2.利用已知的公式推導(dǎo)新公式的能力.
(三)德育滲透點
數(shù)學(xué)來源于生產(chǎn)實踐,又反過來服務(wù)于生產(chǎn)實踐.
。ㄋ模┟烙凉B透點
數(shù)學(xué)公式是用簡潔的數(shù)學(xué)形式來闡明自然規(guī)定,解決實際問題,形成了色彩斑斕的多種數(shù)學(xué)方法,從而使學(xué)生感受到數(shù)學(xué)公式的簡潔美.
二、學(xué)法引導(dǎo)
1.?dāng)?shù)學(xué)方法:引導(dǎo)發(fā)現(xiàn)法,以復(fù)習(xí)提問小學(xué)里學(xué)過的公式為基礎(chǔ)、突破難點
2.學(xué)生學(xué)法:觀察分析推導(dǎo)計算
三、重點、難點、疑點及解決辦法
1.重點:利用舊公式推導(dǎo)出新的圖形的計算公式.
2.難點:同重點.
3.疑點:把要求的圖形如何分解成已經(jīng)熟悉的圖形的和或差.
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
投影儀,自制膠片。
六、師生互動活動設(shè)計
教者投影顯示推導(dǎo)梯形面積計算公式的圖形,學(xué)生思考,師生共同完成例1解答;教者啟發(fā)學(xué)生求圖形的面積,師生總結(jié)求圖形面積的公式.
七、教學(xué)步驟
(一)創(chuàng)設(shè)情景,復(fù)習(xí)引入
師:同學(xué)們已經(jīng)知道,代數(shù)的一個重要特點就是用字母表示數(shù),用字母表示數(shù)有很多應(yīng)用,公式就是其中之一,我們在小學(xué)里學(xué)過許多公式,請大家回憶一下,我們已經(jīng)學(xué)過哪些公式,教法說明,讓學(xué)生一開始就參與課堂教學(xué),使學(xué)生在后面利用公式計算感到不生疏.
在學(xué)生說出幾個公式后,師提出本節(jié)課我們應(yīng)在小學(xué)學(xué)習(xí)的基礎(chǔ)上,研究如何運用公式解決實際問題.
板書:公式
師:小學(xué)里學(xué)過哪些面積公式?
板書:S=ah
。ǔ鍪就队1)。解釋三角形,梯形面積公式
【教法說明】讓學(xué)生感知用割補法求圖形的面積。
。ǘ┨剿髑笾,講授新課
師:下面利用面積公式進行有關(guān)計算
。ǔ鍪就队2)
例1如圖是一個梯形,下底(米),上底,高,利用梯形面積公式求這個梯形的面積S。
師生共同分析:1.根據(jù)梯形面積計算公式,要計算梯形面積,必須知道哪些量?這些現(xiàn)在知道嗎?
2.題中“M”是什么意思?(師補充說明厘米可寫作cm,千米寫作km,平方厘米寫作等)
學(xué)生口述解題過程,教師予以指正并指出,強調(diào)解題的規(guī)范性.
【教法說明】1.通過分析,引導(dǎo)學(xué)生在一個實際問題中,必須明確哪些量是已知的,哪些量是未知的,要解決這個問題,必須已知哪些量.2.用公式計算時,要先寫出公式,然后代入計算,養(yǎng)成良好的解題習(xí)慣.
(出示投影3)
例2如圖是一個環(huán)形,外圓半徑,內(nèi)圓半徑求這個環(huán)形的面積
學(xué)生討論:1.環(huán)形是怎樣形成的.2.如何求環(huán)形的面積討論后請學(xué)生板演,其他同學(xué)做在練習(xí)本上,教育巡回指導(dǎo).
評講時注意1.如果有學(xué)生作了簡便計算,則給予表揚和鼓勵:如果沒有學(xué)生這樣計算,則啟發(fā)學(xué)生這樣計算.
2.本題實際上是由圓的面積公式推導(dǎo)出環(huán)形面積公式.
3.進一步強調(diào)解題的規(guī)范性
教法說明,讓學(xué)生做例題,學(xué)生能自己評判對與錯,優(yōu)與劣,是獲取知識的一個很好的途徑.
測試反饋,鞏固練習(xí)
(出示投影4)
1.計算底,高的三角形面積
2.已知長方形的'長是寬的1.6倍,如果用a表示寬,那么這個長方形的周長是多少?當(dāng)時,求t
3.已知圓的半徑,,求圓的周長C和面積S
4.從A地到B地有20千米上坡路和30千米下坡路,某車上坡時每小時走千米,下坡時每小時走千米。
(1)求A地到B地所用的時間公式。
。2)若千米/時,千米/時,求從A地到B地所用的時間。
學(xué)生活動:分兩次完成,每次兩題,兩人板演,其他同學(xué)在練習(xí)本上完成,做好后同桌交換評判,第一次可請兩位基礎(chǔ)較差的同學(xué)板演,第二次請中等層次的學(xué)生板演.
【教法說明】面向全體,分層教學(xué),能照顧兩極,使所有的同學(xué)有所發(fā)展.
師:公式本身是用等號聯(lián)接起來的代數(shù)式,許多公式在實際中都有重要的用處,可以用公式直接計算還可以利用公式推導(dǎo)出新的公式.
八、隨堂練習(xí)
。ㄒ唬┨羁
1.圓的半徑為R,它的面積________,周長_____________
2.平行四邊形的底邊長是,高是,它的面積_____________;如果,,那么_________
3.圓錐的底面半徑為,高是,那么它的體積__________如果,,那么_________
(二)一種塑料三角板形狀,尺寸如圖,它的厚度是,求它的體積V,如果,,,V是多少?
九、布置作業(yè)
(一)必做題課本第xx頁x、x、x第xx頁x組x
(二)選做題課本第xx頁xx組x
初中數(shù)學(xué)教案6
一、素質(zhì)教育目標(biāo)
(一)知識教學(xué)點
1.掌握的三要素,能正確畫出.
2.能將已知數(shù)在上表示出來,能說出上已知點所表示的數(shù).
(二)能力訓(xùn)練點
1.使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,逐步形成應(yīng)用數(shù)學(xué)的意識.
2.對學(xué)生滲透數(shù)形結(jié)合的思想方法.
(三)德育滲透點
使學(xué)生初步了解數(shù)學(xué)來源于實踐,反過來又服務(wù)于實踐的辯證唯物主義觀點.
(四)美育滲透點
通過畫,給學(xué)生以圖形美的教育,同時由于數(shù)形的結(jié)合,學(xué)生會得到和諧美的享受.
二、學(xué)法引導(dǎo)
1.教學(xué)方法:根據(jù)教師為主導(dǎo),學(xué)生為主體的原則,始終貫穿“激發(fā)情趣—手腦并用—啟發(fā)誘導(dǎo)—反饋矯正”的教學(xué)方法.
2.學(xué)生學(xué)法:動手畫,動腦概括的三要素,動手、動腦做練習(xí).
三、重點、難點、疑點及解決辦法
1.重點:正確掌握畫法和用上的點表示有理數(shù).
2.難點:有理數(shù)和上的點的對應(yīng)關(guān)系。
四、課時安排
1課時
五、教具學(xué)具準(zhǔn)備
電腦、投影儀、自制膠片.
六、師生互動活動設(shè)計
師生同步畫,學(xué)生概括三要素,師出示投影,生動手動腦練習(xí)
七、教學(xué)步驟
(一)創(chuàng)設(shè)情境,引入新課
師:大家知識溫度計的用途是什么?
生:溫度計可以測量溫度
(出示投影1)
三個溫度計.其中一個溫度計的液面在0上20個刻度,一個溫度計的液面在0下5個刻度,一個溫度計的液面在0刻度.
師:三個溫度計所表示的溫度是多少?
生:2℃,-5℃,0℃.
我們能否用類似溫度計的圖形表示有理數(shù)呢?
這種表示數(shù)的圖形就是今天我們要學(xué)的內(nèi)容—(板書課題).
【教法說明】從溫度計用標(biāo)有讀數(shù)的刻度來表示溫度的高低這個事實出發(fā),引出本節(jié)課所要學(xué)的內(nèi)容—.再從溫度計這個實物形象抽象出來研究.既激發(fā)了學(xué)生的學(xué)習(xí)興趣,又使學(xué)生受到把實際問題抽象成數(shù)學(xué)問題的訓(xùn)練,培養(yǎng)了用數(shù)學(xué)的意識.
(二)探索新知,講授新課
1.的畫法
與溫度計類似,可以在一條直線上畫出刻度,標(biāo)上讀數(shù),用直線上的點表示正數(shù)、負數(shù)和零,具體做法如下:
第一步:畫直線定原點原點表示0(相當(dāng)于溫度計上的0℃).
第二步:規(guī)定從原點向右的`為正方向那么相反的方向(從原點向左)則為負方向.(相當(dāng)于溫度計上℃以上為正,0℃以下為負).
第三步:選擇適當(dāng)?shù)拈L度為單位長度(相當(dāng)于溫度計上每1℃占1小格的長度).
【教法說明】教師邊講解邊示范,學(xué)生跟著一起畫圖.培養(yǎng)學(xué)生動手、動腦和實際操作能力,同時,把類比作為一種重要方法貫穿于概念形成過程的始終,讓學(xué)生在認知過程中領(lǐng)悟這種思想方法.
讓學(xué)生觀察畫好的直線,思考以下問題:
(出示投影1)
(1)原點表示什么數(shù)?
(2)原點右方表示什么數(shù)?原點左方表示什么數(shù)?
(3)表示+2的點在什么位置?表示-1的點在什么位置?
(4)原點向右0.5個單位長度的A點表示什么數(shù)?原點向左個單位長度的B點表示什么數(shù)?
根據(jù)老師畫圖的步驟,學(xué)生思考在一條水平的直線上都畫出什么?然后歸納出的定義。
學(xué)生活動:同學(xué)們思考,并要求同桌相互敘述,互相糾正補充,語句通順后舉手回答.大家思考準(zhǔn)備更正或補充。
初中數(shù)學(xué)教案7
教學(xué)目標(biāo):
1.會用待定系數(shù)法求反比例函數(shù)的解析式。
2.通過實例進一步加深對反比例函數(shù)的認識,能結(jié)合具體情境,體會反比例函數(shù)的意義,理解比例系數(shù)的具體的意義。
3.會通過已知自變量的值求相應(yīng)的反比例函數(shù)的值。運用已知反比例函數(shù)的值求相應(yīng)自變量的值解決一些簡單的問題。
重點:用待定系數(shù)法求反比例函數(shù)的解析式。
難點:例3要用科學(xué)知識,又要用不等式的知識,學(xué)生不易理解。
教學(xué)過程:
一。復(fù)習(xí)
1、反比例函數(shù)的定義:
判斷下列說法是否正確(對‖√‖,錯‖3‖)
(1)一矩形的面積為20cm2,相鄰的兩條邊長分別為x(cm)和y(cm),變量y是變量x的反比例函數(shù)。(2)圓的面積公式s??r2中,s與r成正比例。(3)矩形的長為a,寬為b,周長為C,當(dāng)C為常量時,a是b的反比例函數(shù)。方形的邊長為x,高為y,當(dāng)其體積V為常量時,y是x的反比例函數(shù)。(4)一個正四棱柱的底面正
定時,商和除數(shù)成反比例。(5)當(dāng)被除數(shù)(不為零)一
(6)計劃修建鐵路1200km,則鋪軌天數(shù)y(d)是每日鋪軌量x(km/d)的反比例函數(shù)。
2、思考:如何確定反比例函數(shù)的'解析式?
(1)已知y是x的反比例函數(shù),比例系數(shù)是3,則函數(shù)解析式是_______
(2)當(dāng)m為何值時,函數(shù)4是反比例函數(shù),并求出其函數(shù)解析式.y?2m?2關(guān)鍵是確定比例系數(shù)!x
二。新課
1.例2:已知變量y與x成反比例,且當(dāng)x=2時y=9,寫出y與x之間的函數(shù)解析式和自變量的取值范圍。小結(jié):要確定一個反比例函數(shù)y?k的解析式,只需求出比例系數(shù)k。如果已知一對自變量與函數(shù)的對應(yīng)值,x
3時,y=2,求這個函數(shù)的解析式和自變量的取值范圍。4就可以先求出比例系數(shù),然后寫出所要求的反比例函數(shù)。2.練習(xí):已知y是關(guān)于x的反比例函數(shù),當(dāng)x=?
3.說一說它們的求法:
(1)已知變量y與x-5成反比例,且當(dāng)x=2時y=9,寫出y與x之間的函數(shù)解析式。
(2)已知變量y-1與x成反比例,且當(dāng)x=2時y=9,寫出y與x之間的函數(shù)解析式。
4.例3、設(shè)汽車前燈電路上的電壓保持不變,選用燈泡的電阻為R(Ω),通過電流的強度為I(A)。
。1)已知一個汽車前燈的電阻為30Ω,通過的電流為0.40A,求I關(guān)于R的函數(shù)解析式,并說明比例系數(shù)的實際意義。
。2)如果接上新燈泡的電阻大于30Ω,那么與原來的相比,汽車前燈的亮度將發(fā)生什么變化?
在例3的教學(xué)中可作如下啟發(fā):
(1)電流、電阻、電壓之間有何關(guān)系?
。2)在電壓U保持不變的前提下,電流強度I與電阻R成哪種函數(shù)關(guān)系?
(3)前燈的亮度取決于哪個變量的大。咳绾螞Q定?
先讓學(xué)生嘗試練習(xí),后師生一起點評。
三。鞏固練習(xí):
1.當(dāng)質(zhì)量一定時,二氧化碳的體積V與密度p成反比例。且V=5m3時,p=1.98kg/m3
。1)求p與V的函數(shù)關(guān)系式,并指出自變量的取值范圍。
。2)求V=9m3時,二氧化碳的密度。
四。拓展:
1.已知y與z成正比例,z與x成反比例,當(dāng)x=-4時,z=3,y=-4.求:
(1)Y關(guān)于x的函數(shù)解析式;
(2)當(dāng)z=-1時,x,y的值。
2.已知y?y1?y2,y1與x成正例,y2與x成反比例,并且x?2與x?3時,y的
值都等于10,求y與x之間的函數(shù)關(guān)系。
五。交流反思
求反比例函數(shù)的解析式一般有兩種情形:一種是在已知條件中明確告知變量之間成反比例函數(shù)關(guān)系,如例2;另一種是變量之間的關(guān)系由已學(xué)的數(shù)量關(guān)系直接給出,如例3中的I?
六、布置作業(yè):P4B組
教學(xué)后記:
U由歐姆定律得到R
初中數(shù)學(xué)教案8
[教學(xué)目標(biāo)]
1、體會并了解反比例函數(shù)的圖象的意義
2、能列表、描點、連線法畫出反比例函數(shù)的圖象
3、通過反比例函數(shù)的圖象的分析,探索并掌握反比例函數(shù)的圖象的性質(zhì)
[教學(xué)重點和難點]
本節(jié)教學(xué)的重點是反比例函數(shù)的圖象及圖象的性質(zhì)
由于反比例函數(shù)的圖象分兩支,給畫圖帶來了復(fù)雜性是本節(jié)教學(xué)的難點
[教學(xué)過程]
1、情境創(chuàng)設(shè)
可以從復(fù)習(xí)一次函數(shù)的圖象開始:你還記得一次函數(shù)的圖象嗎?在回憶與交流中,進一步認識函數(shù)圖象的直觀有助于理解函數(shù)的性質(zhì)。轉(zhuǎn)而導(dǎo)人關(guān)注新的函數(shù)——反比例函數(shù)的圖象研究:反比例函數(shù)的圖象又會是什么樣子呢?
2、探索活動
探索活動1反比例函數(shù)y?
由于反比例函數(shù)y?
要分幾個層次來探求:
。1)可以先估計——例如:位置(圖象所在象限、圖象與坐標(biāo)軸的交點等)、趨勢(上升、下降等);
。2)方法與步驟——利用描點作圖;
列表:取自變量x的哪些值?——x是不為零的任何實數(shù),所以不能取x的值的.為零,但仍可以以零為基準(zhǔn),左右均勻,對稱地取值。
描點:依據(jù)什么(數(shù)據(jù)、方法)找點?
連線:怎樣連線?——可在各個象限內(nèi)按照自變量從小到大的順序用兩條光滑的曲線把所描的點連接起來。
探索活動2反比例函數(shù)y??2的圖象。x2的圖象是曲線型的,且分成兩支。對此,學(xué)生第一次接觸有一定的難度,因此需x2的圖象。x
可以引導(dǎo)學(xué)生采用多種方式進行自主探索活動:
2的圖象的方式與步驟進行自主探索其圖象;x
222(2)可以通過探索函數(shù)y?與y??之間的關(guān)系,畫出y??的圖象。__
22探索活動3反比例函數(shù)y??與y?的圖象有什么共同特征?__(1)可以用畫反比例函數(shù)y?
引導(dǎo)學(xué)生從通過與一次函數(shù)的圖象的對比感受反比例函數(shù)圖象“曲線”及“兩支”的特征。(即雙曲線)反比例函數(shù)y?
k(k≠0)的圖象中兩支曲線都與x軸、y軸不相交;并且當(dāng)k?0時,圖象在第一、第x
初中數(shù)學(xué)教案9
教學(xué)目的
1、使學(xué)生了解無理數(shù)和實數(shù)的概念,掌握實數(shù)的分類,會準(zhǔn)確判斷一個數(shù)是有理數(shù)還是無理數(shù)。
2、使學(xué)生能了解實數(shù)絕對值的意義。
3、使學(xué)生能了解數(shù)軸上的點具有一一對應(yīng)關(guān)系。
4、由實數(shù)的分類,滲透數(shù)學(xué)分類的思想。
5、由實數(shù)與數(shù)軸的一一對應(yīng),滲透數(shù)形結(jié)合的.思想。
教學(xué)分析
重點:無理數(shù)及實數(shù)的概念。
難點:有理數(shù)與無理數(shù)的區(qū)別,點與數(shù)的一一對應(yīng)。
教學(xué)過程
一、復(fù)習(xí)
1、什么叫有理數(shù)?
2、有理數(shù)可以如何分類?
。ò炊x分與按大小分。)
二、新授
1、無理數(shù)定義:無限不循環(huán)小數(shù)叫做無理數(shù)。
判斷:無限小數(shù)都是無理數(shù);無理數(shù)都是無限小數(shù);帶根號的數(shù)都是無理數(shù)。
2、實數(shù)的定義:有理數(shù)與無理數(shù)統(tǒng)稱為實數(shù)。
3、按課本中列表,將各數(shù)間的聯(lián)系介紹一下。
除了按定義還能按大小寫出列表。
4、實數(shù)的相反數(shù):
5、實數(shù)的絕對值:
6、實數(shù)的運算
講解例1,加上(3)若|x|=π(4)若|x-1|= ,那么x的值是多少?
例2,判斷題:
(1)任何實數(shù)的偶次冪是正實數(shù)。( )
。2)在實數(shù)范圍內(nèi),若| x|=|y|則x=y。( )
。3)0是最小的實數(shù)。( )
。4)0是絕對值最小的實數(shù)。( )
解:略
三、練習(xí)
P148 練習(xí):3、4、5、6。
四、小結(jié)
1、今天我們學(xué)習(xí)了實數(shù),請同學(xué)們首先要清楚,實數(shù)是如何定義的,它與有理數(shù)是怎樣的關(guān)系,二是對實數(shù)兩種不同的分類要清楚。
2、要對應(yīng)有理數(shù)的相反數(shù)與絕對值定義及運算律和運算性質(zhì),來理解在實數(shù)中的運用。
五、作業(yè)
1、P150 習(xí)題A:3。
2、基礎(chǔ)訓(xùn)練:同步練習(xí)1。
初中數(shù)學(xué)教案10
教學(xué)建議
一、知識結(jié)構(gòu)
二、重點難點分析
本節(jié)教學(xué)的重點是同位角、內(nèi)錯角、同旁內(nèi)角的概念、難點為在較復(fù)雜的圖形中辨認同位角、內(nèi)錯角、同旁內(nèi)角、掌握同位角、內(nèi)錯角、同旁內(nèi)角的相關(guān)概念是進一步學(xué)習(xí)平行線、四邊形等后續(xù)知識的基礎(chǔ)、
。1)兩條直線被第三條直線所截,構(gòu)成八個角(簡稱“三線八角”),其中同位角4對,內(nèi)錯角2對,同旁內(nèi)角2對、
。2)準(zhǔn)確識別同位角、內(nèi)錯角、同旁內(nèi)角的關(guān)鍵,是弄清哪兩條直線被哪一條線所截、也就是說,在辨別這些角之前,要弄清哪一條直線是截線,哪兩條直線是被截線、
。3)在截線的同旁找同位角和同旁內(nèi)角,在截線的兩旁找內(nèi)錯角、要結(jié)合圖形,熟記同位角、內(nèi)錯角、同旁內(nèi)角的位置特點,比較它們的區(qū)別與聯(lián)系、
(4)在復(fù)雜的圖形中識別同位角、內(nèi)錯角、同旁內(nèi)角時,應(yīng)當(dāng)沿著角的邊將圖形補全,或者把多余的線暫時略去,找到三線八角的基本圖形,進而確定這兩個角的位置關(guān)系、
三、教法建議
1、上節(jié)課討論了兩條直線相交以后所形成的四個角,這一節(jié)課是進一步討論三條直線相交后所形成的八個角,所以在教課過程,要運用基本圖形結(jié)構(gòu)將所學(xué)的知識及其內(nèi)在聯(lián)系向?qū)W生展示、
2、在講三線八角概念時,一定要細致地分析、顧名思義,把握住兩個關(guān)鍵的環(huán)節(jié),“三條線與一條線”,盡量給出變式的圖形,讓學(xué)生分辨清楚、
3、這節(jié)課雖然不涉及兩條直線平行后被第三條直線所截的問題,但在可能的情況下,將平行線的圖形讓學(xué)生見到,對下一步的學(xué)習(xí)很有好處,例如,平行四形中的內(nèi)錯角,學(xué)生開始接受起來有一定困難,在這一課時中,出現(xiàn)這個基本圖形,為以后學(xué)習(xí)打下基礎(chǔ)、
教學(xué)設(shè)計示例
一、素質(zhì)教育目標(biāo)
。ㄒ唬┲R教學(xué)點
1、理解同位角、內(nèi)錯角、同旁內(nèi)角的概念、
2、結(jié)合圖形識別同位角、內(nèi)錯角、同旁內(nèi)角、
。ǘ┠芰τ(xùn)練點
1、通過變式圖形的識圖訓(xùn)練,培養(yǎng)學(xué)生的識圖能力、
2、通過例題口答“為什么”,培養(yǎng)學(xué)生的推理能力、
。ㄈ┑掠凉B透點
從復(fù)雜圖形分解為基本圖形的過程中,滲透化繁為簡,化難為易的化歸思想;從圖形變化過程中,培養(yǎng)學(xué)生辯證唯物主義觀點、
。ㄋ模┟烙凉B透點
通過“三線八角”基本圖形,使學(xué)生認識幾何圖形的位置美、
二、學(xué)法引導(dǎo)
1、教師教法:嘗試指導(dǎo),討論評價、變式練習(xí)、回授、
2、學(xué)生學(xué)法:主動思考,相互研討,自我歸納、
三、重點、難點、疑點及解決辦法
(一)生點
同位角、內(nèi)錯角、同旁內(nèi)角的概念、
(二)難點
在較復(fù)雜的圖形中辨認同位角、內(nèi)錯角、同旁內(nèi)角、
。ㄈ┮牲c
正確理解新概念、
。ㄋ模┙鉀Q辦法
引導(dǎo)學(xué)生討論歸納三類角的特征,并以練習(xí)加以鞏固、
四、課時安排
1課時
一、教具學(xué)具準(zhǔn)備
投影儀、三角板、自制膠片、
六、師生互動活動設(shè)計
1、通過一組練習(xí)創(chuàng)設(shè)情境,復(fù)習(xí)基礎(chǔ)知識,引入新課、
2、通過學(xué)生閱讀書本,教師設(shè)問引導(dǎo),練習(xí)鞏固講授新課、
3、通過師生互答完成課堂小結(jié)、
七、教學(xué)步驟
。ㄒ唬┟鞔_目標(biāo)
使學(xué)生掌握“三線八角”,并能在圖形中進行辨識、
。ǘ┱w感知
以復(fù)習(xí)舊知創(chuàng)設(shè)情境引入課題,以指導(dǎo)閱讀、設(shè)計問題、小組討論學(xué)習(xí)新知,以變式練習(xí)鞏固新知、
。ㄈ┙虒W(xué)過程
創(chuàng)設(shè)情境,復(fù)習(xí)導(dǎo)入
回答下列問題:
1、如圖,∠1與∠3,∠2與∠4是什么角?它們的大小有什么關(guān)系?
2、如圖,∠1與∠2,∠l與∠4是什么角?它們有什么關(guān)系?
3、如圖,三條直線 AB 、CD 、EF 交于一點 O ,則圖中有幾對對頂角,有幾對鄰補角?
4、如圖,三條直線 AB 、CD 、EF 兩兩相交,則圖中有幾對對項角,有幾對鄰補角?
5、三條直線相交除上述兩種情況外,還有其他相交的情形嗎?
學(xué)生答后,教師出示復(fù)合投影片1,在(1、2題的)圖上添加一條直線 CD ,使 CD 與EF相交于某一點(如圖),直線 AB 、CD 都與EF相交或者說兩條直線 AB 、CD 被第三條直線EF所截,這樣圖中就構(gòu)成八個角,在這八個角中,有公共頂點的兩個角的關(guān)系前面已經(jīng)學(xué)過,今天,我們來研究那些沒有公共頂點的兩個角的關(guān)系、
【板書】 2.3同位角、內(nèi)錯角、同旁內(nèi)角
【教法說明】通過復(fù)合投影片演示了同位角、內(nèi)錯角、同旁內(nèi)角的產(chǎn)生過程,并從演示過程中看到,這些角也是與相交線有關(guān)系的角,兩條直線被第三條直線所截,是相交線的又一種情況、認識事物間是發(fā)展變化的辯證關(guān)系、
嘗試指導(dǎo),學(xué)習(xí)新知
1、學(xué)生自己嘗試學(xué)習(xí),閱讀課本第67頁例題前的內(nèi)容、
2、設(shè)計以下問題,幫助學(xué)生正確理解概念、
。1)同位角:∠4和∠8與截線及兩條被截直線在位置上有什么特點?圖中還有其他同位角嗎?
。2)內(nèi)錯角:∠3和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他內(nèi)錯角嗎?
。3)同旁內(nèi)角:∠4和∠5與截線及兩條被截直線在位置上有什么特點?圖中還有其他同分內(nèi)角嗎?
。4)同位角和同分內(nèi)角在位置上有什么相同點和不同點?
內(nèi)錯角和同旁內(nèi)角在位置上有什么相同點和不同點?
(5)這三類角的共同特征是什么?
3、對上述問題以小組為單位展開討論,然后學(xué)生間互相評議、
4、教師對學(xué)生討論過程中所發(fā)表的意見進行評判,歸納總結(jié)、
在截線的同旁找同位角和同旁內(nèi)角,在截線的不同旁找內(nèi)錯角,因此在“三線八角”的圖形中的主線是截線,抓住了截線,再利用圖形結(jié)構(gòu)特征( F 、Z 、U )判斷問題就迎刃而解、
【教法說明】讓學(xué)生自己嘗試學(xué)習(xí),可以充分發(fā)揮學(xué)生的積極性、主動性和創(chuàng)造性,幾個問題的設(shè)計目的是深化教學(xué)重點,使學(xué)生看書更具有針對性,避免盲目性、學(xué)生互相評價可以增加討論的深度,教師最后評價可以統(tǒng)一學(xué)生的觀點,學(xué)生在議議評評的過程中明理、增智,培養(yǎng)了能力、
投影顯示(投影片2)
例題?如圖,直線DE、BC被直線AB所截,(1)∠l與∠2,∠1與∠3,∠1與∠4各是什么關(guān)系的角?
。2)如果∠1=∠4,那么∠1和∠2相等嗎?∠1和∠3互補嗎?為什么?
。劢谭ㄕf明]例題較簡單,讓學(xué)生口答,回答“為什么”只要求學(xué)生能用文字語言把主要根據(jù)說出來,講明道理即可,不必太規(guī)范,等學(xué)習(xí)證明時再嚴(yán)格訓(xùn)練、
變式訓(xùn)練,鞏固新知
投影顯示(投影片3)
【教法說明】本題是對簡單變式圖形的訓(xùn)練,以培養(yǎng)學(xué)生的識圖能力,第2題指明第三條直線是 c ,即 a 和 b 被 c 所截,如 c 和 a 被占所截,則結(jié)果截然不同,因此遇到題目先分清哪兩條直線被哪一條直線所栽,這是解題的關(guān)鍵和前提、
投影顯示(投影片4)
【教法說明】本組練習(xí)是由同位角、內(nèi)錯角和同旁內(nèi)角找出構(gòu)成它們的“三線”,或是由“三線八角”圖形判斷同位角、內(nèi)錯角、同旁內(nèi)角、這兩者都需要進行這樣的三個步驟,一看角的頂點;二看角的邊;三看角的方位、這“三看”又離不開主線——截線的確定,讓學(xué)生知道:無論圖形的.位置怎樣變動,圖形多么復(fù)雜,都要以截線為主線(不變),去解決萬變的圖形,另外遇到較復(fù)雜的圖形,也可以從分解圖形入手,把復(fù)雜圖形化為若干個基本圖形、如第2題由已知條件結(jié)合所求部分,對各個小題分別分解圖形如下:
投影顯示(投影片5)
【教法說明】學(xué)生在較復(fù)雜的圖形中,對找這一類的同位角,找這一類的內(nèi)錯角,找這一類的同旁內(nèi)角有一定困難,為此安排本組選擇題,有利于突破難點,第2題中學(xué)生對 C 、D 兩個圖形易混淆,要加強對比以便解決教學(xué)疑點。第3題讓學(xué)生掌握三角形中的3對同旁內(nèi)角。另外本組練習(xí)也為后面的練習(xí)打基礎(chǔ)。
投影顯示(投影片6)
【教法說明】本組題目是上組題的延伸,再次突破難點,提高學(xué)生思維的廣度與深度、學(xué)生解決此類題常常因考慮不全面而丟解,要使學(xué)生養(yǎng)成全方位多角度考慮問題的習(xí)慣,第2題以裁線為標(biāo)準(zhǔn)分類求解,分別把 AB 、BD 、EF 看成是截線找三類角,這樣既不遺漏又不重復(fù)、
。ㄋ模┛偨Y(jié)、擴展
1、本節(jié)研究了一條直線分別和兩條直線相交,所得八個角的位置關(guān)系,掌握辨別這些角位置關(guān)系的關(guān)鍵是分清哪條線是截線,哪些線是被截直線,在截線的同旁找同位角和同旁內(nèi)角,在截線的不同旁找內(nèi)錯角,只要抓住三線中的主線——截線,就能正確識別這三類角、
2、相交直線
3、教師指著圖中的一條被截直線,問:“這條直線繞著與截線著與截線的交點旋轉(zhuǎn),當(dāng)同位角相等時,兩條被截直線是什么關(guān)系?”
【教法說明】將所學(xué)知識進行歸納總結(jié),加強了知識問的聯(lián)系,充分體現(xiàn)了所學(xué)知識的系統(tǒng)性,最后用是合式小結(jié)、可使學(xué)生課后自覺地去看預(yù)習(xí),尋找答案。系統(tǒng)性,最后用懸念式小結(jié),可使學(xué)生課后自覺地去看書預(yù)習(xí),尋找答案。
八、布置作業(yè)
課本第72頁B組第4題、
【教法說明】課本練習(xí)穿插在課堂練習(xí)中完成,故只留一道提高題,讓學(xué)有余力的同學(xué)繼續(xù)探究,提高學(xué)生思維廣度
作業(yè)答案
4、答:(1)設(shè) E 是 BC 延長線上的一點,∠ A 與∠ ACD 、∠ ACE 是內(nèi)錯角,它們分別是由直線 AB 、CD 被直線 AC 截成的和直線 AB 、BE 被直線 AC 截成的。
。2)∠ B 與∠ DCE 、∠ ACE 是同位有,它們分別是由直線 AB 、CD 被直線 BE 截成的和直線 AB 、AC 被直線 BE 截成的。
初中數(shù)學(xué)教案11
《正方形》教學(xué)設(shè)計
教學(xué)內(nèi)容分析:
、艑W(xué)習(xí)特殊的平行四邊形—正方形,它的特殊的性質(zhì)和判定。
、魄懊鎸W(xué)習(xí)了平行四邊形、矩形菱形,類比他們的性質(zhì)與判斷,有利于對正方形的研究。
、菍Ρ竟(jié)的學(xué)習(xí),繼續(xù)培養(yǎng)學(xué)生分類研究的思想,并且建立新舊知識的聯(lián)系,類比的基礎(chǔ)上進行歸納,梳理知識,進一步發(fā)展學(xué)生的推理能力。
學(xué)生分析:
、艑W(xué)生在小學(xué)初步認識了正方形,并且本節(jié)課之前,學(xué)生又學(xué)習(xí)了幾種平行四邊形,已經(jīng)具備了觀察研究平行四邊形的經(jīng)驗與知識基礎(chǔ)。
、茖W(xué)生在上幾節(jié)已有了推理的經(jīng)歷,但是對于證明,學(xué)生的思維能力還不成熟,有待于提高。
教學(xué)目標(biāo):
、胖R與技能:了解正方形是特殊的平行四邊形,掌握它的性質(zhì)和判定,會利用性質(zhì)與判定進行簡單的說理。
、七^程與方法:通過類比前邊的四邊形的研究,探索并歸納正方形的性質(zhì)與判定。通過運用提高學(xué)生的推理能力。
、乔楦袘B(tài)度與價值觀:在學(xué)習(xí)中體會正方形的完美性,通過活動獲得成功的喜悅與自信。
重點:掌握正方形的性質(zhì)與判定,并進行簡單的推理。
難點:探索正方形的判定,發(fā)展學(xué)生的推理能
教學(xué)方法:類比與探究
教具準(zhǔn)備:可以活動的四邊形模型。
一、教學(xué)分析
(一)教學(xué)內(nèi)容分析
1.教材:義務(wù)教育課程標(biāo)準(zhǔn)實驗教科書《數(shù)學(xué)》九年級上冊(人民教育出版社)
2.本課教學(xué)內(nèi)容的地位、作用,知識的前后聯(lián)系
《中心對稱圖形》是新人教版九年級數(shù)學(xué)上冊第二十三章第二單元第二節(jié)課的內(nèi)容。本節(jié)教材屬于圖形變換的內(nèi)容,是在學(xué)習(xí)了“軸對稱和軸對稱圖形”、“旋轉(zhuǎn)和中心對稱”后的一種對稱圖形,因此涉及歸納、類比等思想方法,對激發(fā)學(xué)生探索精神和創(chuàng)新意識等方面都有重要意義。
3.本課教學(xué)內(nèi)容的特點,重點分析體現(xiàn)新課程理念的特點
本節(jié)課主要介紹中心對稱圖形的概念、中心對稱圖形的識別、中心對稱圖形與軸對稱圖形與中心對稱的比較、中心對稱圖形的性質(zhì)。為使學(xué)生感受、理解知識的產(chǎn)生和發(fā)展過程,培養(yǎng)學(xué)生的抽象思維,我將通過:(1)例舉日常生活中的一些旋轉(zhuǎn)對稱圖形引出中心對稱圖形的概念;(2)引導(dǎo)學(xué)生觀察、猜想、實驗、歸納、類比等方法探究中心對稱圖形的性質(zhì),(3)通過多媒體演示使學(xué)生對中心對稱圖形的性質(zhì)有直觀的表象。我認為這環(huán)環(huán)相扣、層層深入、循序漸進的活動過程,符合新課程標(biāo)準(zhǔn)理念和學(xué)生建構(gòu)知識的規(guī)律,有利于激發(fā)學(xué)生的學(xué)習(xí)情趣。
(二)教學(xué)對象分析
1.學(xué)生所在地區(qū)、學(xué)校及班級的特色
我授課的班級是西安市閻良區(qū)振興中學(xué)九年級一班,作為九年級的學(xué)生,在圖形的對稱方面已經(jīng)積累一些經(jīng)驗,已經(jīng)具有一定的觀察、猜想、實驗、歸納、類比等研究圖形對稱變換的能力;班級學(xué)生具有個性活潑,思維活躍,對各種事物充滿好奇,學(xué)習(xí)情緒易于調(diào)動,學(xué)習(xí)積極性高的特點,但學(xué)生的抽象思維能力個體差異較大,并且班級中已出現(xiàn)分化現(xiàn)象。
2.學(xué)生的年齡特點和認知特點
班級學(xué)生的年齡大多在15歲到17歲間。他們已具備了一定的獨立分析、解決問題的能力,表現(xiàn)欲望較為強烈,喜好發(fā)表個人見解并且具有一定的合作交流、共同探討的意識與經(jīng)驗,因此在課程內(nèi)容的安排中,適當(dāng)?shù)貏?chuàng)設(shè)一些具有一定思維深度的問題,加強學(xué)生在學(xué)習(xí)過程中自主探索與合作交流的緊密結(jié)合,促使學(xué)生在探究的過程中,更多地獲得成功的體驗,感受學(xué)習(xí)思考的樂趣。
教學(xué)過程:
一:復(fù)習(xí)鞏固,建立聯(lián)系。
【教師活動】
問題設(shè)置:①平行四邊形、矩形,菱形各有哪些性質(zhì)?
、()的四邊形是平行四邊形。()的平行四邊形是矩形。()的平行四邊形是菱形。()的四邊形是矩形。()的四邊形是菱形。
【學(xué)生活動】
學(xué)生回憶,并舉手回答,對于填空題,讓更多的學(xué)生參與,說出更多的答案。
【教師活動】
評析學(xué)生的結(jié)果,給予表揚。
總結(jié)性質(zhì)從邊角對角線考慮,在填空時也考慮這幾方面之外,還應(yīng)該考慮三者之間的聯(lián)系與區(qū)別。
演示平行四邊形變?yōu)榫匦瘟庑蔚倪^程。
二:動手操作,探索發(fā)現(xiàn)。
活動一:拿出一張矩形紙片,拉起一角,使其寬AB落在長AD邊上,如下圖所示,沿著B′E剪下,能得到什么圖形?
【學(xué)生活動】
學(xué)生拿出自備矩形紙片,動手操作,不難發(fā)現(xiàn)它是正方形。
設(shè)置問題:①什么是正方形?
觀察發(fā)現(xiàn),從活動中體會。
【教師活動】:演示矩形變?yōu)檎叫蔚倪^程,菱形變?yōu)檎叫蔚倪^程。
【學(xué)生活動】認真觀察變化過程,思考之間的聯(lián)系,舉手回答設(shè)置問題。
設(shè)置問題②正方形是矩形嗎,是菱形嗎?是平行四邊形嗎?為什么?
【學(xué)生活動】
小組討論,分組回答。
【教師活動】
總結(jié)板書:㈠(一組鄰邊相等)的矩形是正方形,(一個角是直角)的菱形是正方形。
設(shè)置問題③正方形有那些性質(zhì)?
【學(xué)生活動】
小組討論,舉手搶答。
【教師活動】
表揚學(xué)生發(fā)言,板書學(xué)生發(fā)現(xiàn),㈡正方形每一條對角線平分一組對角
活動二:拿出活動一得到的正方形折一折,正方形是軸對稱圖形嗎?有幾條對稱軸?
學(xué)生活動
折紙發(fā)現(xiàn),說出自己的發(fā)現(xiàn)。得到正方形的又一性質(zhì)。正方形是軸對稱圖形。
教師活動
演示從平行四邊形變?yōu)檎叫蔚倪^程,擦去板書㈠中的括號內(nèi)容,出示一下問題:你還可以怎樣填空?
()的菱形是正方形,()的矩形是正方形,()的平行四邊形是正方形,()的四邊形是正方形。
學(xué)生活動
小組充分交流,表達不同的意見。
教師活動
評析活動,總結(jié)發(fā)現(xiàn):
一組鄰邊相等的矩形是正方形,對角線互相平分的矩形是正方形;
有一個角是直角的`菱形是正方形,對角線相等的菱形是正方形,;
有一組鄰邊相等且有一個角是直角的平行四邊形是正方形,對角線相等且互相平分的平行四邊形是正方形;
四邊相等且有一角是直角的四邊形是正方形,對角線相等且互相垂直平分的四邊形是正方形。
以上是正方形的判定方法。
正方形是一個多么完美的平行四邊形呀?大家互相說一說,它的完美體現(xiàn)在哪里?生活中有哪些利用正方形的例子?
學(xué)生交流,感受正方形
三,應(yīng)用體驗,推理證明。
出示例一:正方形ABCD的兩條對角線AC,BD交與O,AB長4cm,求AC,AO長,及的度數(shù)。
方法一解:∵四邊形ABCD是正方形
∴∠ABC=90°(正方形的四個角是直角)
BC=AB=4cm(正方形的四條邊相等)
∴=45°(等腰直角三角形的底角是45°)
∴利用勾股定理可知,AC===4cm
∵AO=AC(正方形的對角線互相平分)
∴AO=×4=2cm
方法二:證明△AOB是等腰直角三角形,即可得證。
學(xué)生活動
獨立思考,寫出推理過程,再進行小組討論,并且各小組指派代表寫在黑板上,共同交流。
教師活動
總結(jié)解題方法,從正方形的性質(zhì)全面考慮,準(zhǔn)確利用條件,減少麻煩。評析解題步驟,表揚突出學(xué)生。
出示例二:在正方形ABCD中,E、F、G、H分別在它的四條邊上,且AE=BF=CG=DH,四邊形EFGH是什么特殊的四邊形,你是如何判斷的?
學(xué)生活動
小組交流,分析題意,整理思路,指名口答。
教師活動
說明思路,從已知出發(fā)或者從已有的判定加以選擇。
四,歸納新知,梳理知識。
這一節(jié)課你有什么收獲?
學(xué)生舉手談?wù)撟约旱氖斋@。
請把平行四邊形,矩形,菱形,正方形分別填寫在下圖的ABCDC處,說明它們的關(guān)系。
發(fā)表評論
教學(xué)目標(biāo):
情意目標(biāo):培養(yǎng)學(xué)生團結(jié)協(xié)作的精神,體驗探究成功的樂趣。
能力目標(biāo):能利用等腰梯形的性質(zhì)解簡單的幾何計算、證明題;培養(yǎng)學(xué)生探究問題、自主學(xué)習(xí)的能力。
認知目標(biāo):了解梯形的概念及其分類;掌握等腰梯形的性質(zhì)。
教學(xué)重點、難點
重點:等腰梯形性質(zhì)的探索;
難點:梯形中輔助線的添加。
教學(xué)課件:PowerPoint演示文稿
教學(xué)方法:啟發(fā)法、
學(xué)習(xí)方法:討論法、合作法、練習(xí)法
教學(xué)過程:
(一)導(dǎo)入
1、出示圖片,說出每輛汽車車窗形狀(投影)
2、板書課題:5梯形
3、練習(xí):下列圖形中哪些圖形是梯形?(投影)
結(jié)梯形概念:只有4、總結(jié)梯形概念:一組對邊平行另以組對邊不平行的四邊形是梯形。
5、指出圖形中各部位的名稱:上底、下底、腰、高、對角線。(投影)
6、特殊梯形的分類:(投影)
。ǘ┑妊菪涡再|(zhì)的探究
【探究性質(zhì)一】
思考:在等腰梯形中,如果將一腰AB沿AD的方向平移到DE的位置,那么所得的△DEC是怎樣的三角形?(投影)
猜想:由此你能得到等腰梯形的內(nèi)角有什么樣的性質(zhì)?(學(xué)生操作、討論、作答)
如圖,等腰梯形ABCD中,AD∥BC,AB=CD。求證:∠B=∠C
想一想:等腰梯形ABCD中,∠A與∠D是否相等?為什么?
等腰梯形性質(zhì):等腰梯形的同一條底邊上的兩個內(nèi)角相等。
【操練】
。1)如圖,等腰梯形ABCD中,AD∥BC,AB=CD,∠B=60o,BC=10cm,AD=4cm,則腰AB=cm。(投影)
(2)如圖,在等腰梯形ABCD中,AD∥BC,AB=CD,DE∥AC,交BC的延長線于點E,CA平分∠BCD,求證:∠B=2∠E.(投影)
【探究性質(zhì)二】
如果連接等腰梯形的兩條對角線,圖中有哪幾對全等三角形?哪些線段相等?(學(xué)生操作、討論、作答)
如上圖,等腰梯形ABCD中,AD∥BC,AB=CD,AC、BD相交于O,求證:AC=BD。(投影)
等腰梯形性質(zhì):等腰梯形的兩條對角線相等。
【探究性質(zhì)三】
問題一:延長等腰梯形的兩腰,哪些三角形是軸對稱圖形?為什么?對稱軸呢?(學(xué)生操作、作答)
問題二:等腰梯是否軸對稱圖形?為什么?對稱軸是什么?(重點討論)
等腰梯形性質(zhì):同以底上的兩個內(nèi)角相等,對角線相等
。ㄈ┵|(zhì)疑反思、小結(jié)
讓學(xué)生回顧本課教學(xué)內(nèi)容,并提出尚存問題;
學(xué)生小結(jié),教師視具體情況給予提示:性質(zhì)(從邊、角、對角線、對稱性等角度總結(jié))、解題方法(化梯形問題為三角形及平行四邊形問題)、梯形中輔助線的添加方法。
初中數(shù)學(xué)教案12
教學(xué)目標(biāo):
1、知識與技能:通過對多種實際問題的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義。
2、過程與方法:通過觀察,歸納一元一次方程的概念。
3、情感與態(tài)度:體驗數(shù)學(xué)與日常生活密切相關(guān),認識到許多實際問題可以用數(shù)學(xué)方法解決。
教學(xué)重點:歸納一元次方程的概念
教學(xué)難點:感受方程作為刻畫現(xiàn)實世界有效模型的意義.
教學(xué)過程:
一、情景導(dǎo)入:
我能猜出你們的.年齡,相信嗎?
只要任何一個同學(xué)回答我一個問題,我就能馬上猜到他的年齡是多少歲,我們來試試吧.
問:你的年齡乘以2加3等于多少?
學(xué)生說出結(jié)果,教師猜測年齡,并問:你們知道我是怎么做的嗎?
學(xué)生討論并回答
二、知識探究:
1、方程的教學(xué)(投影演示)
小彬和小明也在進行猜年齡游戲,我們來看一看。
找出這道題中的等量關(guān)系,列出方程.
大家觀察,這兩個式子有什么特點。
討論并回答:什么是方程?方程有哪些特點?
2、 判斷下列式子是不是方程?
。1)X+2=3(是)(2)X+3Y=6(是)
。3)3M-6(不是)(4)1+2=3(不是)
。5)X+3>5(不是)(6)Y-12=5(是)
三、合作交流
1、如果告訴我們一些實際生活中的問題,大家能夠自己列出方程嗎?(投影演示)
情景一:小穎種了一株樹苗,開始時樹苗高為40厘米,栽種后每周樹苗長高約15厘米,大約幾周后樹苗長高到1米?
你能找出題中的等量關(guān)系嗎?怎樣列方程?由此題你們想到了些什么?
情景二:第五次全國人口普查統(tǒng)計數(shù)據(jù)(20xx年3月28日新華社公布)
截至20xx年11月1日0時,全國每10萬人中具有大學(xué)文化程度的人數(shù)為3611人,比1990年7月1日0時增長了153.94%
1990年6月底每10萬人中約有多少人具有大學(xué)文化程度?情景三:西湖中學(xué)的體育場的足球場,其周長為200米,長和寬之差為12米,這個足球場的長和寬分別是多少米?
下面是剛才根據(jù)幾道情景題所列的方程,分析下列方程有何共同點?
2X–5=21
40+15X=100
X(1+153.94﹪)=3611
2[X+(X+12)]=200
2[Y+(Y–12)]=200
在一個方程中,只含有一個未知數(shù)X(元),并且未知數(shù)的指數(shù)是1(次),這樣的方程叫一元一次方程。
問:大家剛才都已經(jīng)自己列出了方程,那個同學(xué)能夠說一下你是怎樣列出方程的,列方程應(yīng)該分為那幾步呢?
生:分組討論,回答列方程的步驟(1)找等量關(guān)系(2)設(shè)未知數(shù)(3)列方程
四、隨堂練習(xí)
1、投影趣味習(xí)題,
2、做一做
下面有兩道題,請選做一題。
(1)、請根據(jù)方程2X+3=21自己設(shè)計一道有實際背景的應(yīng)用題。
。2)、發(fā)揮你的想象,用自己的年齡編一道應(yīng)用題,并列出方程。
五、課堂小節(jié)
1、這節(jié)課你學(xué)到了什么?
2、這節(jié)課給你印象最深的是什么?
六、作業(yè):分組布置
數(shù)學(xué)教案-你今年幾歲了搜集整理
初中數(shù)學(xué)教案13
1、 知識與技能目標(biāo)
掌握有理數(shù)乘法法則,能利用乘法法則正確進行有理數(shù)乘法運算。
2、 能力與過程目標(biāo)
經(jīng)歷探索、歸納有理數(shù)乘法法則的過程,發(fā)展學(xué)生觀察、歸納、猜測、驗證等能力。
3、 情感與態(tài)度目標(biāo)
通過學(xué)生自己探索出法則,讓學(xué)生獲得成功的喜悅。
重點:運用有理數(shù)乘法法則正確進行計算。
難點:有理數(shù)乘法法則的探索過程,符號法則及對法則的理解。
1、 創(chuàng)設(shè)問題情景,激發(fā)學(xué)生的求知欲望,導(dǎo)入新課。
教師:由于長期干旱,水庫放水抗旱。每天放水2米,已經(jīng)放了3天,現(xiàn)在水深20米,問放水抗旱前水庫水深多少米?
學(xué)生:26米。
教師:能寫出算式嗎?學(xué)生:……
教師:這涉及有理數(shù)乘法運算法則,正是我們今天需要討論的問題
2、 小組探索、歸納法則
。1)教師出示以下問題,學(xué)生以組為單位探索。
以原點為起點,規(guī)定向東的方向為正方向,向西的方向為負方向。
、 2 ×3
2看作向東運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
2 ×3=
、 -2 ×3
-2看作向西運動2米,×3看作向原方向運動3次。
結(jié)果:向 運動 米
-2 ×3=
、 2 ×(-3)
2看作向東運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
2 ×(-3)=
、 (-2) ×(-3)
-2看作向西運動2米,×(-3)看作向反方向運動3次。
結(jié)果:向 運動 米
。-2) ×(-3)=
。2)學(xué)生歸納法則
、俜枺涸谏鲜4個式子中,我們只看符號,有什么規(guī)律?
。+)×(+)=( ) 同號得
。-)×(+)=( ) 異號得
。+)×(-)=( ) 異號得
(-)×(-)=( ) 同號得
、诜e的絕對值等于 。
、廴魏螖(shù)與零相乘,積仍為 。
。3)師生共同用文字敘述有理數(shù)乘法法則。
3、 運用法則計算,鞏固法則。
。1)教師按課本p75 例1板書,要求學(xué)生述說每一步理由。
。2)引導(dǎo)學(xué)生觀察、分析例子中兩因數(shù)的'關(guān)系,得出兩個有理數(shù)互為倒數(shù),它們的積為 。
。3)學(xué)生做練習(xí),教師評析。
。4)教師引導(dǎo)學(xué)生做例題,讓學(xué)生說出每步法則,使之進一步熟悉法則,同時讓學(xué)生總結(jié)出多因數(shù)相乘的符號法則。
初中數(shù)學(xué)教案14
教學(xué)目標(biāo)
1.通過實驗,使學(xué)生相信經(jīng)過大量的重復(fù)實驗后得到的頻率值確實可以作為隨機事件每次發(fā)生的機會的估計值,體會隨機事件中所隱含著的確定性內(nèi)涵。
2.使學(xué)生知道,通過實驗的方法,用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。且在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但個人所得的值也并不一定相同。
3.培養(yǎng)學(xué)生合作學(xué)習(xí)的能力,并學(xué)會與他人交流思維的過程和結(jié)果。
教學(xué)重難點
重點:頻率與機會的關(guān)系。
難點:如何用頻率估計機會的大?教學(xué)準(zhǔn)備數(shù)枚相同的圖釘。
教學(xué)過程
一、提出問題
上一節(jié)課,通過一系列的實驗和觀察,我們已經(jīng)知道:實驗是估計機會大小的一種方法。我們可以通過實驗,觀察某事件出現(xiàn)的頻率,當(dāng)頻率值逐漸穩(wěn)定時,這個值就可以作為我們對該事件發(fā)生機會的估計。
實際上,在前面的問題中,即使不做實驗,也可以設(shè)法預(yù)先推測出事件發(fā)生的機會,為什么還要花大量時間去進行實驗?zāi)兀?/p>
下面讓我們看另一類問題:
一枚圖釘被拋起后釘尖觸地的機會有多大?
二、分組實驗
1.兩個學(xué)生一個小組,一人拋擲,一人記錄
每個小組拋擲40次,記錄出現(xiàn)釘尖觸地的頻數(shù)
教師負責(zé)把各小組的結(jié)果登錄在黑板上
2.然后把每小組的結(jié)果合起來,分別計算拋擲80次、 120次、 160次、 200次、 240次、 180次、 320次、 360次、 400次、 480次、 520次、 560次后出現(xiàn)釘尖觸地的'頻數(shù)及頻率
3.列出統(tǒng)計表,繪制折線圖
4.根據(jù)實驗結(jié)果估計一下釘尖觸地的機會是百分之幾?
5.課本第105頁表15.2.1和圖15.2.2是一位同學(xué)在拋擲圖釘?shù)膶嶒炛挟嫷慕y(tǒng)計表和折線圖。這與你實驗的結(jié)果相同嗎?為什么?
三、深入思考
如果兩個小組使用的是兩種不同形狀的圖釘,那么這兩種圖釘釘尖觸地的機會相同嗎?
能把兩個小組的實驗數(shù)據(jù)合起來進行實驗嗎?
四、概括小結(jié)
從上面的問題可以看出:
1.通過實驗的方法用頻率估計機會的大小,必須要求實驗是在相同條件下進行的。比如,以同樣的方式拋擲同一種圖釘。
2.在相同的條件下,實驗次數(shù)越多,就越有可能得到較好的估計值,但每人所得的值也并不一定相同。
五、用心觀察
我們已經(jīng)知道,在相同條件下,實驗次數(shù)越多,就越有可能得到較好的估計值。那么,總共要做多少次實驗才認為得到的結(jié)果比較可靠呢?
觀察課本第105頁表15.2.1和圖15.2.2 。
當(dāng)實驗進行到多少次以后,所得頻率值就趨于平穩(wěn)了?
( 小結(jié):實驗到頻率值較穩(wěn)定時,結(jié)果比較可靠。這個頻率值也就可以作為這個事件發(fā)生機會的估計值。 )
六、鞏固練習(xí)
課本第107頁練習(xí)第1 、 2題。
七、課堂小結(jié)
這節(jié)課你有什么收獲?還有哪些問題需要老師幫你解決的?
注意:通過實驗的方法用頻率估計機會大小,必須要求實驗是在相同條件下進行的。
八、布置作業(yè)
1 、課本第108頁習(xí)題15.2第2題
2 、課本第106頁做一做
2 、數(shù)字之積為奇數(shù)與偶數(shù)的機會
初中數(shù)學(xué)教案15
教學(xué)建議
知識結(jié)構(gòu)
重難點分析
本節(jié)的重點是的性質(zhì)和判定定理。是在平行四邊形的前提下定義的,首先她是平行四邊形,但它是特殊的平行四邊形,特殊之處就是“有一組鄰邊相等”,因而就增加了一些特殊的性質(zhì)和不同于平行四邊形的判定方法。的這些性質(zhì)和判定定理即是平行四邊形性質(zhì)與判定的延續(xù),又是以后要學(xué)習(xí)的正方形的基礎(chǔ)。
本節(jié)的難點是性質(zhì)的靈活應(yīng)用。由于是特殊的平行四邊形,所以它不但具有平行四邊形的性質(zhì),同時還具有自己獨特的性質(zhì)。如果得到一個平行四邊形是,就可以得到許多關(guān)于邊、角、對角線的條件,在實際解題中,應(yīng)該應(yīng)用哪些條件,怎樣應(yīng)用這些條件,常常讓許多學(xué)生手足無措,教師在教學(xué)過程中應(yīng)給予足夠重視。
教法建議
根據(jù)本節(jié)內(nèi)容的特點和與平行四邊形的關(guān)系,建議教師在教學(xué)過程中注意以下問題:
1、的知識,學(xué)生在小學(xué)時接觸過一些,可由小學(xué)學(xué)過的知識作為引入。
2、在現(xiàn)實中的實例較多,在講解的性質(zhì)和判定時,教師可自行準(zhǔn)備或由學(xué)生準(zhǔn)備一些生活實例來進行判別應(yīng)用了哪些性質(zhì)和判定,既增加了學(xué)生的參與感又鞏固了所學(xué)的知識.
3、如果條件允許,教師在講授這節(jié)內(nèi)容前,可指導(dǎo)學(xué)生按照教材148頁圖4-33所示,制作一個平行四邊形作為教學(xué)過程中的.道具,既增強了學(xué)生的動手能力和參與感,有在教學(xué)中有切實的體例,使學(xué)生對知識的掌握更輕松些.
4、在對性質(zhì)的講解中,教師可將學(xué)生分成若干組,每個學(xué)生分別對事先準(zhǔn)備后的圖形進行邊、角、對角線的測量,然后在組內(nèi)進行整理、歸納.
5、由于和的性質(zhì)定理證明比較簡單,教師可引導(dǎo)學(xué)生分析思路,由學(xué)生來進行具體的證明.
6、在性質(zhì)應(yīng)用講解中,為便于理解掌握,教師要注意題目的層次安排。
1.掌握概念,知道與平行四邊形的關(guān)系.
2.掌握的性質(zhì).
3.通過運用知識解決具體問題,提高分析能力和觀察能力.
4.通過教具的演示培養(yǎng)學(xué)生的學(xué)習(xí)興趣.
5.根據(jù)平行四邊形與矩形、的從屬關(guān)系,通過畫圖向?qū)W生滲透集合思想.
6.通過性質(zhì)的學(xué)習(xí),體會的圖形美.
觀察分析討論相結(jié)合的方法
1.教學(xué)重點:的性質(zhì)定理.
2.教學(xué)難點:把的性質(zhì)和直角三角形的知識綜合應(yīng)用.
3.疑點:與矩形的性質(zhì)的區(qū)別.
1課時
教具(做一個短邊可以運動的平行四邊形)、投影儀和膠片,常用畫圖工具
教師演示教具、創(chuàng)設(shè)情境,引入新課,學(xué)生觀察討論;學(xué)生分析論證方法,教師適時點撥
【復(fù)習(xí)提問】
1.什么叫做平行四邊形?什么叫矩形?平行四邊形和矩形之間的關(guān)系是什么?
2.矩形中對角線與大邊的夾角為,求小邊所對的兩條對角線的夾角.
3.矩形的一個角的平分線把較長的邊分成、,求矩形的周長.
【引入新課】
我們已經(jīng)學(xué)習(xí)了一種特殊的平行四邊形——矩形,其實還有另外的特殊平行四邊形,這時可將事先按課本中圖4-38做成的一個短邊也可以活動的教具進行演示,如圖,改變平行四邊形的邊,使之一組鄰進相等,引出概念.
【講解新課】
1.定義:有一組鄰邊相等的平行四邊形叫做.
講解這個定義時,要抓住概念的本質(zhì),應(yīng)突出兩條:
(1)強調(diào)是平行四邊形.
。2)一組鄰邊相等.
2.的性質(zhì):
教師強調(diào),既然是特殊的平行四邊形,因此它就具有平行四邊形的一切性質(zhì),此外由于它比平行四邊形多了“一組鄰邊相等”的條件,和矩形類似,也比平行四邊形增加了一些特殊性質(zhì).
下面研究的性質(zhì):
師:同學(xué)們根據(jù)的定義結(jié)合圖形猜一下有什么性質(zhì)(讓學(xué)生們討論,并引導(dǎo)學(xué)生分別從邊、角、對角線三個方面分析).
生:因為是有一組鄰邊相等的平行四邊形,所以根據(jù)平行四邊形對邊相等的性質(zhì)可以得到.
性質(zhì)定理1:的四條邊都相等.
由的四條邊都相等,根據(jù)平行四邊形對角線互相平分,可以得到
性質(zhì)定理2:的對角線互相垂直并且每一條對角線平分一組對角.
引導(dǎo)學(xué)生完成定理的規(guī)范證明.
師:觀察右圖,被對角線分成的四個直角三角形有什么關(guān)系?
生:全等.
師:它們的底和高和兩條對角線有什么關(guān)系?
生:分別是兩條對角線的一半.
師:如果設(shè)的兩條對角線分別為、,則的面積是什么?
生:
教師指出當(dāng)不易求出對角☆☆線長時,就用平行四邊形面積的一般計算方法計算面積.
例2已知:如右圖,是△的角平分線,交于,交于.
求證:四邊形是.
。ㄒ龑(dǎo)學(xué)生用定義來判定.)
例3已知的邊長為,對角線,相交于點,如右圖,求這個的對角線長和面積.
。1)按教材的方法求面積.
。2)還可以引導(dǎo)學(xué)生求出△一邊上的高,即的高,然后用平行四邊形的面積公式計算的面積.
【總結(jié)、擴展】
1.小結(jié):(打出投影)(圖4)
。1)、平行四邊形、四邊形的從屬關(guān)系:
。2)性質(zhì):圖5
、倬哂衅叫兴倪呅蔚乃行再|(zhì).
、谔赜行再|(zhì):四條邊相等;對角線互相垂直,且平分每一組對角.
教材p158中6、7、8,p196中10
標(biāo)題
定義……
性質(zhì)例2…… 小結(jié):
性質(zhì)定理1:……例3…… ……
性質(zhì)定理2:……
教材p151中1、2、3
補充
1.的兩條對角線長分別是3和4,則周長和面積分別是___________、___________.
2.周長為80,一對角線為20,則相鄰兩角的度數(shù)為___________、____________.
【初中數(shù)學(xué)教案】相關(guān)文章:
初中數(shù)學(xué)教案11-26
初中數(shù)學(xué)教案模板12-01
初中數(shù)學(xué)教案15篇12-30
幼兒的數(shù)學(xué)教案03-01