高中數(shù)學(xué)教案15篇
作為一位杰出的老師,通常需要準(zhǔn)備好一份教案,教案有助于順利而有效地開展教學(xué)活動?靵韰⒖冀贪甘窃趺磳懙陌桑∠旅媸切【帪榇蠹沂占母咧袛(shù)學(xué)教案,歡迎大家分享。
高中數(shù)學(xué)教案1
教學(xué)目標(biāo)
知識與技能目標(biāo):
本節(jié)的中心任務(wù)是研究導(dǎo)數(shù)的幾何意義及其應(yīng)用,概念的形成分為三個層次:
(1)通過復(fù)習(xí)舊知“求導(dǎo)數(shù)的兩個步驟”以及“平均變化率與割線斜率的關(guān)系”,解決了平均變化率的幾何意義后,明確探究導(dǎo)數(shù)的幾何意義可以依據(jù)導(dǎo)數(shù)概念的形成尋求解決問題的途徑。
(2)從圓中割線和切線的變化聯(lián)系,推廣到一般曲線中用割線逼近的方法直觀定義切線。
(3)依據(jù)割線與切線的變化聯(lián)系,數(shù)形結(jié)合探究函數(shù)導(dǎo)數(shù)的幾何意義教案在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案的幾何意義,使學(xué)生認(rèn)識到導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象在導(dǎo)數(shù)的幾何意義教案處的切線的斜率。即:
導(dǎo)數(shù)的幾何意義教案=曲線在導(dǎo)數(shù)的幾何意義教案處切線的斜率k
在此基礎(chǔ)上,通過例題和練習(xí)使學(xué)生學(xué)會利用導(dǎo)數(shù)的幾何意義解釋實(shí)際生活問題,加深對導(dǎo)數(shù)內(nèi)涵的理解。在學(xué)習(xí)過程中感受逼近的思想方法,了解“以直代曲”的數(shù)學(xué)思想方法。
過程與方法目標(biāo):
(1)學(xué)生通過觀察感知、動手探究,培養(yǎng)學(xué)生的動手和感知發(fā)現(xiàn)的能力。
(2)學(xué)生通過對圓的切線和割線聯(lián)系的認(rèn)識,再類比探索一般曲線的情況,完善對切線的認(rèn)知,感受逼近的思想,體會相切是種局部性質(zhì)的本質(zhì),有助于數(shù)學(xué)思維能力的提高。
(3)結(jié)合分層的探究問題和分層練習(xí),期望各種層次的學(xué)生都可以憑借自己的能力盡力走在教師的前面,獨(dú)立解決問題和發(fā)現(xiàn)新知、應(yīng)用新知。
情感、態(tài)度、價值觀:
(1)通過在探究過程中滲透逼近和以直代曲思想,使學(xué)生了解近似與精確間的辨證關(guān)系;通過有限來認(rèn)識無限,體驗(yàn)數(shù)學(xué)中轉(zhuǎn)化思想的意義和價值;
(2)在教學(xué)中向他們提供充分的從事數(shù)學(xué)活動的機(jī)會,如:探究活動,讓學(xué)生自主探究新知,例題則采用練在講之前,講在關(guān)鍵處。在活動中激發(fā)學(xué)生的學(xué)習(xí)潛能,促進(jìn)他們真正理解和掌握基本的數(shù)學(xué)知識技能、數(shù)學(xué)思想方法,獲得廣泛的數(shù)學(xué)活動經(jīng)驗(yàn),提高綜合能力,學(xué)會學(xué)習(xí),進(jìn)一步在意志力、自信心、理性精神等情感與態(tài)度方面得到良好的發(fā)展。
教學(xué)重點(diǎn)與難點(diǎn)
重點(diǎn):理解和掌握切線的新定義、導(dǎo)數(shù)的幾何意義及應(yīng)用于解決實(shí)際問題,體會數(shù)形結(jié)合、以直代曲的思想方法。
難點(diǎn):發(fā)現(xiàn)、理解及應(yīng)用導(dǎo)數(shù)的幾何意義。
教學(xué)過程
一、復(fù)習(xí)提問
1.導(dǎo)數(shù)的定義是什么?求導(dǎo)數(shù)的三個步驟是什么?求函數(shù)y=x2在x=2處的導(dǎo)數(shù).
定義:函數(shù)在導(dǎo)數(shù)的幾何意義教案處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案就是函數(shù)在該點(diǎn)處的瞬時變化率。
求導(dǎo)數(shù)的步驟:
第一步:求平均變化率導(dǎo)數(shù)的幾何意義教案;
第二步:求瞬時變化率導(dǎo)數(shù)的幾何意義教案.
(即導(dǎo)數(shù)的幾何意義教案,平均變化率趨近于的確定常數(shù)就是該點(diǎn)導(dǎo)數(shù))
2.觀察函數(shù)導(dǎo)數(shù)的幾何意義教案的圖象,平均變化率導(dǎo)數(shù)的幾何意義教案在圖形中表示什么?
生:平均變化率表示的是割線PQ的斜率.導(dǎo)數(shù)的幾何意義教案
師:這就是平均變化率(導(dǎo)數(shù)的幾何意義教案)的幾何意義,
3.瞬時變化率(導(dǎo)數(shù)的幾何意義教案)在圖中又表示什么呢?
如圖2-1,設(shè)曲線C是函數(shù)y=f(x)的圖象,點(diǎn)P(x0,y0)是曲線C上一點(diǎn).點(diǎn)Q(x0+Δx,y0+Δy)是曲線C上與點(diǎn)P鄰近的任一點(diǎn),作割線PQ,當(dāng)點(diǎn)Q沿著曲線C無限地趨近于點(diǎn)P,割線PQ便無限地趨近于某一極限位置PT,我們就把極限位置上的直線PT,叫做曲線C在點(diǎn)P處的切線.
導(dǎo)數(shù)的幾何意義教案
追問:怎樣確定曲線C在點(diǎn)P的切線呢?因?yàn)镻是給定的,根據(jù)平面解析幾何中直線的點(diǎn)斜式方程的知識,只要求出切線的斜率就夠了.設(shè)割線PQ的傾斜角為導(dǎo)數(shù)的幾何意義教案,切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案,易知割線PQ的斜率為導(dǎo)數(shù)的.幾何意義教案。既然割線PQ的極限位置上的直線PT是切線,所以割線PQ斜率的極限就是切線PT的斜率導(dǎo)數(shù)的幾何意義教案,即導(dǎo)數(shù)的幾何意義教案。
由導(dǎo)數(shù)的定義知導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案。
導(dǎo)數(shù)的幾何意義教案
由上式可知:曲線f(x)在點(diǎn)(x0,f(x0))處的切線的斜率就是y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).今天我們就來探究導(dǎo)數(shù)的幾何意義。
C類學(xué)生回答第1題,A,B類學(xué)生回答第2題在學(xué)生回答基礎(chǔ)上教師重點(diǎn)講評第3題,然后逐步引入導(dǎo)數(shù)的幾何意義.
二、新課
1、導(dǎo)數(shù)的幾何意義:
函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0)的幾何意義,就是曲線y=f(x)在點(diǎn)(x0,f(x0))處切線的斜率.
即:導(dǎo)數(shù)的幾何意義教案
口答練習(xí):
(1)如果函數(shù)y=f(x)在已知點(diǎn)x0處的導(dǎo)數(shù)分別為下列情況f'(x0)=1,f'(x0)=1,f'(x0)=-1,f'(x0)=2.試求函數(shù)圖像在對應(yīng)點(diǎn)的切線的傾斜角,并說明切線各有什么特征。
(C層學(xué)生做)
(2)已知函數(shù)y=f(x)的圖象(如圖2-2),分別為以下三種情況的直線,通過觀察確定函數(shù)在各點(diǎn)的導(dǎo)數(shù).(A、B層學(xué)生做)
導(dǎo)數(shù)的幾何意義教案
2、如何用導(dǎo)數(shù)研究函數(shù)的增減?
小結(jié):附近:瞬時,增減:變化率,即研究函數(shù)在該點(diǎn)處的瞬時變化率,也就是導(dǎo)數(shù)。導(dǎo)數(shù)的正負(fù)即對應(yīng)函數(shù)的增減。作出該點(diǎn)處的切線,可由切線的升降趨勢,得切線斜率的正負(fù)即導(dǎo)數(shù)的正負(fù),就可以判斷函數(shù)的增減性,體會導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。
同時,結(jié)合以直代曲的思想,在某點(diǎn)附近的切線的變化情況與曲線的變化情況一樣,也可以判斷函數(shù)的增減性。都反應(yīng)了導(dǎo)數(shù)是研究函數(shù)增減、變化快慢的有效工具。
例1函數(shù)導(dǎo)數(shù)的幾何意義教案上有一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求該點(diǎn)處的導(dǎo)數(shù)導(dǎo)數(shù)的幾何意義教案,并由此解釋函數(shù)的增減情況。
導(dǎo)數(shù)的幾何意義教案
函數(shù)在定義域上任意點(diǎn)處的瞬時變化率都是3,函數(shù)在定義域內(nèi)單調(diào)遞增。(此時任意點(diǎn)處的切線就是直線本身,斜率就是變化率)
3、利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程.
例2求曲線y=x2在點(diǎn)M(2,4)處的切線方程.
解:導(dǎo)數(shù)的幾何意義教案
∴y'|x=2=2×2=4.
∴點(diǎn)M(2,4)處的切線方程為y-4=4(x-2),即4x-y-4=0.
由上例可歸納出求切線方程的兩個步驟:
(1)先求出函數(shù)y=f(x)在點(diǎn)x0處的導(dǎo)數(shù)f'(x0).
(2)根據(jù)直線方程的點(diǎn)斜式,得切線方程為y-y0=f'(x0)(x-x0).
提問:若在點(diǎn)(x0,f(x0))處切線PT的傾斜角為導(dǎo)數(shù)的幾何意義教案導(dǎo)數(shù)的幾何意義教案,求切線方程。(因?yàn)檫@時切線平行于y軸,而導(dǎo)數(shù)不存在,不能用上面方法求切線方程。根據(jù)切線定義可直接得切線方程導(dǎo)數(shù)的幾何意義教案)
(先由C類學(xué)生來回答,再由A,B補(bǔ)充.)
例3已知曲線導(dǎo)數(shù)的幾何意義教案上一點(diǎn)導(dǎo)數(shù)的幾何意義教案,求:(1)過P點(diǎn)的切線的斜率;
(2)過P點(diǎn)的切線的方程。
解:(1)導(dǎo)數(shù)的幾何意義教案,
導(dǎo)數(shù)的幾何意義教案
y'|x=2=22=4. ∴在點(diǎn)P處的切線的斜率等于4.
(2)在點(diǎn)P處的切線方程為導(dǎo)數(shù)的幾何意義教案即12x-3y-16=0.
練習(xí):求拋物線y=x2+2在點(diǎn)M(2,6)處的切線方程.
(答案:y'=2x,y'|x=2=4切線方程為4x-y-2=0).
B類學(xué)生做題,A類學(xué)生糾錯。
三、小結(jié)
1.導(dǎo)數(shù)的幾何意義.(C組學(xué)生回答)
2.利用導(dǎo)數(shù)求曲線y=f(x)在點(diǎn)(x0,f(x0))處的切線方程的步驟.
(B組學(xué)生回答)
四、布置作業(yè)
1.求拋物線導(dǎo)數(shù)的幾何意義教案在點(diǎn)(1,1)處的切線方程。
2.求拋物線y=4x-x2在點(diǎn)A(4,0)和點(diǎn)B(2,4)處的切線的斜率,切線的方程.
3.求曲線y=2x-x3在點(diǎn)(-1,-1)處的切線的傾斜角
4.已知拋物線y=x2-4及直線y=x+2,求:(1)直線與拋物線交點(diǎn)的坐標(biāo); (2)拋物線在交點(diǎn)處的切線方程;
(C組學(xué)生完成1,2題;B組學(xué)生完成1,2,3題;A組學(xué)生完成2,3,4題)
教學(xué)反思:
本節(jié)內(nèi)容是在學(xué)習(xí)了“變化率問題、導(dǎo)數(shù)的概念”等知識的基礎(chǔ)上,研究導(dǎo)數(shù)的幾何意義,由于新教材未設(shè)計極限,于是我盡量采用形象直觀的方式,讓學(xué)生通過動手作圖,自我感受整個逼近的過程,讓學(xué)生更加深刻地體會導(dǎo)數(shù)的幾何意義及“以直代曲”的思想。
本節(jié)課主要圍繞著“利用函數(shù)圖象直觀理解導(dǎo)數(shù)的幾何意義”和“利用導(dǎo)數(shù)的幾何意義解釋實(shí)際問題”兩個教學(xué)重心展開。先回憶導(dǎo)數(shù)的實(shí)際意義、數(shù)值意義,由數(shù)到形,自然引出從圖形的角度研究導(dǎo)數(shù)的幾何意義;然后,類比“平均變化率——瞬時變化率”的研究思路,運(yùn)用逼近的思想定義了曲線上某點(diǎn)的切線,再引導(dǎo)學(xué)生從數(shù)形結(jié)合的角度思考,獲得導(dǎo)數(shù)的幾何意義——“導(dǎo)數(shù)是曲線上某點(diǎn)處切線的斜率”。
完成本節(jié)課第一階段的內(nèi)容學(xué)習(xí)后,教師點(diǎn)明,利用導(dǎo)數(shù)的幾何意義,在研究實(shí)際問題時,某點(diǎn)附近的曲線可以用過此點(diǎn)的切線近似代替,即“以直代曲”,從而達(dá)到“以簡單的對象刻畫復(fù)雜對象”的目的,并通過兩個例題的研究,讓學(xué)生從不同的角度完整地體驗(yàn)導(dǎo)數(shù)與切線斜率的關(guān)系,并感受導(dǎo)數(shù)應(yīng)用的廣泛性。本節(jié)課注重以學(xué)生為主體,每一個知識、每一個發(fā)現(xiàn),總設(shè)法由學(xué)生自己得出,課堂上給予學(xué)生充足的思考時間和空間,讓學(xué)生在動手操作、動筆演算等活動后,再組織討論,本教師只是在關(guān)鍵處加以引導(dǎo)。從學(xué)生的作業(yè)看來,效果較好。
高中數(shù)學(xué)教案2
教學(xué)目的:
。1)使學(xué)生初步理解集合的概念,知道常用數(shù)集的概念及記法
(2)使學(xué)生初步了解“屬于”關(guān)系的意義
。3)使學(xué)生初步了解有限集、無限集、空集的意義
教學(xué)重點(diǎn):集合的基本概念及表示方法
教學(xué)難點(diǎn):運(yùn)用集合的兩種常用表示方法——列舉法與描述法,正確表示一些簡單的集合
授課類型:新授課
課時安排:1課時
教 具:多媒體、實(shí)物投影儀
內(nèi)容分析:
集合是中學(xué)數(shù)學(xué)的一個重要的基本概念 在小學(xué)數(shù)學(xué)中,就滲透了集合的初步概念,到了初中,更進(jìn)一步應(yīng)用集合的語言表述一些問題 例如,在代數(shù)中用到的有數(shù)集、解集等;在幾何中用到的有點(diǎn)集 至于邏輯,可以說,從開始學(xué)習(xí)數(shù)學(xué)就離不開對邏輯知識的掌握和運(yùn)用,基本的邏輯知識在日常生活、學(xué)習(xí)、工作中,也是認(rèn)識問題、研究問題不可缺少的工具 這些可以幫助學(xué)生認(rèn)識學(xué)習(xí)本章的意義,也是本章學(xué)習(xí)的基礎(chǔ)把集合的初步知識與簡易邏輯知識安排在高中數(shù)學(xué)的最開始,是因?yàn)樵诟咧袛?shù)學(xué)中,這些知識與其他內(nèi)容有著密切聯(lián)系,它們是學(xué)習(xí)、掌握和使用數(shù)學(xué)語言的基礎(chǔ) 例如,下一章講函數(shù)的概念與性質(zhì),就離不開集合與邏輯。
本節(jié)首先從初中代數(shù)與幾何涉及的集合實(shí)例入手,引出集合與集合的元素的概念,并且結(jié)合實(shí)例對集合的概念作了說明 然后,介紹了集合的常用表示方法,包括列舉法、描述法,還給出了畫圖表示集合的例子。
這節(jié)課主要學(xué)習(xí)全章的引言和集合的基本概念 學(xué)習(xí)引言是引發(fā)學(xué)生的學(xué)習(xí)興趣,使學(xué)生認(rèn)識學(xué)習(xí)本章的意義 本節(jié)課的教學(xué)重點(diǎn)是集合的基本概念集合是集合論中的原始的、不定義的概念 在開始接觸集合的概念時,主要還是通過實(shí)例,對概念有一個初步認(rèn)識 教科書給出的“一般地,某些指定的對象集在一起就成為一個集合,也簡稱集 ”這句話,只是對集合概念的描述性說明。
教學(xué)過程:
一、復(fù)習(xí)引入:
1、簡介數(shù)集的發(fā)展,復(fù)習(xí)最大公約數(shù)和最小公倍數(shù),質(zhì)數(shù)與和數(shù);
2、教材中的章頭引言;
3、集合論的創(chuàng)始人——康托爾(德國數(shù)學(xué)家)(見附錄);
4.“物以類聚”,“人以群分”;
5.教材中例子(P4)
二、講解新課:
閱讀教材第一部分,問題如下:
。1)有那些概念?是如何定義的?
(2)有那些符號?是如何表示的?
。3)集合中元素的特性是什么?
(一)集合的有關(guān)概念:
由一些數(shù)、一些點(diǎn)、一些圖形、一些整式、一些物體、一些人組成的。我們說,每一組對象的全體形成一個集合,或者說,某些指定的對象集在一起就成為一個集合,也簡稱集。集合中的每個對象叫做這個集合的元素。
定義:一般地,某些指定的對象集在一起就成為一個集合.
1、集合的概念
。1)集合:某些指定的對象集在一起就形成一個集合(簡稱集)
(2)元素:集合中每個對象叫做這個集合的元素
2、常用數(shù)集及記法
。1)非負(fù)整數(shù)集(自然數(shù)集):全體非負(fù)整數(shù)的集合 記作N,
。2)正整數(shù)集:非負(fù)整數(shù)集內(nèi)排除0的`集 記作N*或N+
。3)整數(shù)集:全體整數(shù)的集合 記作Z ,
。4)有理數(shù)集:全體有理數(shù)的集合 記作Q ,
。5)實(shí)數(shù)集:全體實(shí)數(shù)的集合 記作R
注:(1)自然數(shù)集與非負(fù)整數(shù)集是相同的,也就是說,自然數(shù)集包括數(shù)0
(2)非負(fù)整數(shù)集內(nèi)排除0的集 記作N*或N+ Q、Z、R等其它數(shù)集內(nèi)排除0的集,也是這樣表示,例如,整數(shù)集內(nèi)排除0的集,表示成Z*
3、元素對于集合的隸屬關(guān)系
。1)屬于:如果a是集合A的元素,就說a屬于A,記作a∈A
。2)不屬于:如果a不是集合A的元素,就說a不屬于A,記作
4、集合中元素的特性
(1)確定性:按照明確的判斷標(biāo)準(zhǔn)給定一個元素或者在這個集合里,或者不在,不能模棱兩可
。2)互異性:集合中的元素沒有重復(fù)
(3)無序性:集合中的元素沒有一定的順序(通常用正常的順序?qū)懗觯?/p>
5、⑴集合通常用大寫的拉丁字母表示,如A、B、C、P、Q……元素通常用小寫的拉丁字母表示,如a、b、c、p、q……
、啤啊省钡拈_口方向,不能把a(bǔ)∈A顛倒過來寫
三、練習(xí)題:
1、教材P5練習(xí)1、2
2、下列各組對象能確定一個集合嗎?
。1)所有很大的實(shí)數(shù) (不確定)
。2)好心的人 (不確定)
。3)1,2,2,3,4,5.(有重復(fù))
3、設(shè)a,b是非零實(shí)數(shù),那么 可能取的值組成集合的元素是_—2,0,2__
4、由實(shí)數(shù)x,-x,|x|, 所組成的集合,最多含( A )
(A)2個元素 (B)3個元素 (C)4個元素 (D)5個元素
5、設(shè)集合G中的元素是所有形如a+b (a∈Z, b∈Z)的數(shù),求證:
。1) 當(dāng)x∈N時, x∈G;
(2) 若x∈G,y∈G,則x+y∈G,而 不一定屬于集合G
證明(1):在a+b (a∈Z, b∈Z)中,令a=x∈N,b=0,則x= x+0* = a+b ∈G,即x∈G
證明(2):∵x∈G,y∈G,
∴x= a+b (a∈Z, b∈Z),y= c+d (c∈Z, d∈Z)
∴x+y=( a+b )+( c+d )=(a+c)+(b+d)
∵a∈Z, b∈Z,c∈Z, d∈Z
∴(a+c) ∈Z, (b+d) ∈Z
∴x+y =(a+c)+(b+d) ∈G,
又∵ =且 不一定都是整數(shù),
∴ = 不一定屬于集合G
四、小結(jié):本節(jié)課學(xué)習(xí)了以下內(nèi)容:
1、集合的有關(guān)概念:(集合、元素、屬于、不屬于)
2、集合元素的性質(zhì):確定性,互異性,無序性
3、常用數(shù)集的定義及記法
高中數(shù)學(xué)教案3
教學(xué)準(zhǔn)備
1.教學(xué)目標(biāo)
1、知識與技能:
函數(shù)是描述客觀世界變化規(guī)律的重要數(shù)學(xué)模型.高中階段不僅把函數(shù)看成變量之間的依
賴關(guān)系,同時還用集合與對應(yīng)的語言刻畫函數(shù),高中階段更注重函數(shù)模型化的思想與意識.
2、過程與方法:
。1)通過實(shí)例,進(jìn)一步體會函數(shù)是描述變量之間的依賴關(guān)系的重要數(shù)學(xué)模型,在此基礎(chǔ)上學(xué)習(xí)用集合與對應(yīng)的語言來刻畫函數(shù),體會對應(yīng)關(guān)系在刻畫函數(shù)概念中的作用;
。2)了解構(gòu)成函數(shù)的要素;
。3)會求一些簡單函數(shù)的定義域和值域;
。4)能夠正確使用“區(qū)間”的符號表示函數(shù)的定義域;
3、情感態(tài)度與價值觀,使學(xué)生感受到學(xué)習(xí)函數(shù)的必要性和重要性,激發(fā)學(xué)習(xí)的積極性.
教學(xué)重點(diǎn)/難點(diǎn)
重點(diǎn):理解函數(shù)的模型化思想,用集合與對應(yīng)的語言來刻畫函數(shù);
難點(diǎn):符號“y=f(x)”的含義,函數(shù)定義域和值域的區(qū)間表示;
教學(xué)用具
多媒體
4.標(biāo)簽
函數(shù)及其表示
教學(xué)過程
。ㄒ唬﹦(chuàng)設(shè)情景,揭示課題
1、復(fù)習(xí)初中所學(xué)函數(shù)的概念,強(qiáng)調(diào)函數(shù)的模型化思想;
2、閱讀課本引例,體會函數(shù)是描述客觀事物變化規(guī)律的數(shù)學(xué)模型的思想:
(1)炮彈的射高與時間的變化關(guān)系問題;
(2)南極臭氧空洞面積與時間的變化關(guān)系問題;
。3)“八五”計劃以來我國城鎮(zhèn)居民的恩格爾系數(shù)與時間的變化關(guān)系問題.
3、分析、歸納以上三個實(shí)例,它們有什么共同點(diǎn);
4、引導(dǎo)學(xué)生應(yīng)用集合與對應(yīng)的語言描述各個實(shí)例中兩個變量間的依賴關(guān)系;
5、根據(jù)初中所學(xué)函數(shù)的概念,判斷各個實(shí)例中的兩個變量間的關(guān)系是否是函數(shù)關(guān)系.
。ǘ┭刑叫轮
1、函數(shù)的有關(guān)概念
。1)函數(shù)的概念:
設(shè)A、B是非空的數(shù)集,如果按照某個確定的對應(yīng)關(guān)系f,使對于集合A中的任意一個數(shù)x,在集合B中都有唯一確定的數(shù)f(x)和它對應(yīng),那么就稱f:A→B為從集合A到集合B的一個函數(shù)(function).
記作:y=f(x),x∈A.
其中,x叫做自變量,x的取值范圍A叫做函數(shù)的定義域(domain);與x的值相對應(yīng)的y值叫做函數(shù)值,函數(shù)值的集合{f(x)|x∈A}叫做函數(shù)的值域(range).
注意:
、佟皔=f(x)”是函數(shù)符號,可以用任意的字母表示,如“y=g(x)”;
、诤瘮(shù)符號“y=f(x)”中的f(x)表示與x對應(yīng)的函數(shù)值,一個數(shù),而不是f乘x.
(2)構(gòu)成函數(shù)的三要素是什么?
定義域、對應(yīng)關(guān)系和值域
。3)區(qū)間的概念
①區(qū)間的分類:開區(qū)間、閉區(qū)間、半開半閉區(qū)間;
②無窮區(qū)間;
③區(qū)間的數(shù)軸表示.
。4)初中學(xué)過哪些函數(shù)?它們的定義域、值域、對應(yīng)法則分別是什么?
通過三個已知的函數(shù):y=ax+b(a≠0)
y=ax2+bx+c(a≠0)
y=(k≠0)比較描述性定義和集合,與對應(yīng)語言刻畫的定義,談?wù)勼w會.
師:歸納總結(jié)
。ㄈ┵|(zhì)疑答辯,排難解惑,發(fā)展思維。
1、如何求函數(shù)的定義域
例1:已知函數(shù)f(x)=+
(1)求函數(shù)的定義域;
。2)求f(-3),f()的值;
。3)當(dāng)a>0時,求f(a),f(a-1)的值.
分析:函數(shù)的定義域通常由問題的實(shí)際背景確定,如前所述的三個實(shí)例.如果只給出解析式y(tǒng)=f(x),而沒有指明它的定義域,那么函數(shù)的定義域就是指能使這個式子有意義的實(shí)數(shù)的集合,函數(shù)的定義域、值域要寫成集合或區(qū)間的形式.
例2、設(shè)一個矩形周長為80,其中一邊長為x,求它的面積關(guān)于x的函數(shù)的解析式,并寫出定義域.
分析:由題意知,另一邊長為x,且邊長x為正數(shù),所以0<x<40.
所以s==(40-x)x(0<x<40)
引導(dǎo)學(xué)生小結(jié)幾類函數(shù)的定義域:
。1)如果f(x)是整式,那么函數(shù)的定義域是實(shí)數(shù)集R.
2)如果f(x)是分式,那么函數(shù)的定義域是使分母不等于零的實(shí)數(shù)的.集合.
。3)如果f(x)是二次根式,那么函數(shù)的定義域是使根號內(nèi)的式子大于或等于零的實(shí)數(shù)的集合.
。4)如果f(x)是由幾個部分的數(shù)學(xué)式子構(gòu)成的,那么函數(shù)定義域是使各部分式子都有意義的實(shí)數(shù)集合.(即求各集合的交集)
。5)滿足實(shí)際問題有意義.
鞏固練習(xí):課本P19第1
2、如何判斷兩個函數(shù)是否為同一函數(shù)
例3、下列函數(shù)中哪個與函數(shù)y=x相等?
分析:
1構(gòu)成函數(shù)三個要素是定義域、對應(yīng)關(guān)系和值域.由于值域是由定義域和對應(yīng)關(guān)系決定的,所以,如果兩個函數(shù)的定義域和對應(yīng)關(guān)系完全一致,即稱這兩個函數(shù)相等(或?yàn)橥缓瘮?shù))
2兩個函數(shù)相等當(dāng)且僅當(dāng)它們的定義域和對應(yīng)關(guān)系完全一致,而與表示自變量和函數(shù)值的字母無關(guān)。
解:
課本P18例2
。ㄋ模w納小結(jié)
、購木唧w實(shí)例引入了函數(shù)的概念,用集合與對應(yīng)的語言描述了函數(shù)的定義及其相關(guān)概念;②初步介紹了求函數(shù)定義域和判斷同一函數(shù)的基本方法,同時引出了區(qū)間的概念.
(五)設(shè)置問題,留下懸念
1、課本P24習(xí)題1.2(A組)第1—7題(B組)第1題
2、舉出生活中函數(shù)的例子(三個以上),并用集合與對應(yīng)的語言來描述函數(shù),同時說出函數(shù)的定義域、值域和對應(yīng)關(guān)系.
課堂小結(jié)
高中數(shù)學(xué)教案4
課題:
等比數(shù)列的概念
教學(xué)目標(biāo)
1、通過教學(xué)使學(xué)生理解等比數(shù)列的概念,推導(dǎo)并掌握通項公式、
2、使學(xué)生進(jìn)一步體會類比、歸納的思想,培養(yǎng)學(xué)生的觀察、概括能力、
3、培養(yǎng)學(xué)生勤于思考,實(shí)事求是的精神,及嚴(yán)謹(jǐn)?shù)目茖W(xué)態(tài)度、
教學(xué)重點(diǎn),難點(diǎn)
重點(diǎn)、難點(diǎn)是等比數(shù)列的定義的歸納及通項公式的推導(dǎo)、
教學(xué)用具
投影儀,多媒體軟件,電腦、
教學(xué)方法
討論、談話法、
教學(xué)過程
一、提出問題
給出以下幾組數(shù)列,將它們分類,說出分類標(biāo)準(zhǔn)、(幻燈片)
、佟2,1,4,7,10,13,16,19,…
②8,16,32,64,128,256,…
、1,1,1,1,1,1,1,…
、243,81,27,9,3,1,,,…
、31,29,27,25,23,21,19,…
⑥1,—1,1,—1,1,—1,1,—1,…
、1,—10,100,—1000,10000,—100000,…
、0,0,0,0,0,0,0,…
由學(xué)生發(fā)表意見(可能按項與項之間的關(guān)系分為遞增數(shù)列、遞減數(shù)列、常數(shù)數(shù)列、擺動數(shù)列,也可能分為等差、等比兩類),統(tǒng)一一種分法,其中②③④⑥⑦為有共同性質(zhì)的一類數(shù)列(學(xué)生看不出③的情況也無妨,得出定義后再考察③是否為等比數(shù)列)、
二、講解新課
請學(xué)生說出數(shù)列②③④⑥⑦的共同特性,教師指出實(shí)際生活中也有許多類似的例子,如變形蟲分裂問題、假設(shè)每經(jīng)過一個單位時間每個變形蟲都分裂為兩個變形蟲,再假設(shè)開始有一個變形蟲,經(jīng)過一個單位時間它分裂為兩個變形蟲,經(jīng)過兩個單位時間就有了四個變形蟲,…,一直進(jìn)行下去,記錄下每個單位時間的變形蟲個數(shù)得到了一列數(shù)
這個數(shù)列也具有前面的幾個數(shù)列的共同特性,這是我們將要研究的另一類數(shù)列——等比數(shù)列、(這里播放變形蟲分裂的多媒體軟件的第一步)
等比數(shù)列(板書)
1、等比數(shù)列的定義(板書)
根據(jù)等比數(shù)列與等差數(shù)列的名字的區(qū)別與聯(lián)系,嘗試給等比數(shù)列下定義、學(xué)生一般回答可能不夠完美,多數(shù)情況下,有了等差數(shù)列的基礎(chǔ)是可以由學(xué)生概括出來的教師寫出等比數(shù)列的定義,標(biāo)注出重點(diǎn)詞語、
請學(xué)生指出等比數(shù)列②③④⑥⑦各自的公比,并思考有無數(shù)列既是等差數(shù)列又是等比數(shù)列、學(xué)生通過觀察可以發(fā)現(xiàn)③是這樣的數(shù)列,教師再追問,還有沒有其他的例子,讓學(xué)生再舉兩例、而后請學(xué)生概括這類數(shù)列的一般形式,學(xué)生可能說形如的數(shù)列都滿足既是等差又是等比數(shù)列,讓學(xué)生討論后得出結(jié)論:當(dāng)時,數(shù)列既是等差又是等比數(shù)列,當(dāng)時,它只是等差數(shù)列,而不是等比數(shù)列、教師追問理由,引出對等比數(shù)列的認(rèn)識:
2、對定義的認(rèn)識(板書)
。1)等比數(shù)列的首項不為0;
。2)等比數(shù)列的每一項都不為0,即
問題:一個數(shù)列各項均不為0是這個數(shù)列為等比數(shù)列的什么條件?
。3)公比不為0、
用數(shù)學(xué)式子表示等比數(shù)列的定義、
是等比數(shù)列
①、在這個式子的寫法上可能會有一些爭議,如寫成
,可讓學(xué)生研究行不行,好不好;接下來再問,能否改寫為
是等比數(shù)列?為什么不能?式子給出了數(shù)列第項與第
項的數(shù)量關(guān)系,但能否確定一個等比數(shù)列?(不能)確定一個等比數(shù)列需要幾個條件?當(dāng)給定了首項及公比后,如何求任意一項的值?所以要研究通項公式、
3、等比數(shù)列的通項公式(板書)
問題:用和表示第項
①不完全歸納法
、诏B乘法,…,,這個式子相乘得,所以(板書)
。1)等比數(shù)列的通項公式得出通項公式后,讓學(xué)生思考如何認(rèn)識通項公式、(板書)
。2)對公式的認(rèn)識
由學(xué)生來說,最后歸結(jié):
、俸瘮(shù)觀點(diǎn);
、诜匠趟枷耄ㄒ蛟诘炔顢(shù)列中已有認(rèn)識,此處再復(fù)習(xí)鞏固而已)、
這里強(qiáng)調(diào)方程思想解決問題、方程中有四個量,知三求一,這是公式最簡單的'應(yīng)用,請學(xué)生舉例(應(yīng)能編出四類問題)、解題格式是什么?(不僅要會解題,還要注意規(guī)范表述的訓(xùn)練)
如果增加一個條件,就多知道了一個量,這是公式的更高層次的應(yīng)用,下節(jié)課再研究、同學(xué)可以試著編幾道題。
三、小結(jié)
1、本節(jié)課研究了等比數(shù)列的概念,得到了通項公式;
2、注意在研究內(nèi)容與方法上要與等差數(shù)列相類比;
3、用方程的思想認(rèn)識通項公式,并加以應(yīng)用。
探究活動
將一張很大的薄紙對折,對折30次后(如果可能的話)有多厚?不妨假設(shè)這張紙的厚度為0、01毫米。
參考答案:
30次后,厚度為,這個厚度超過了世界最高的山峰——珠穆朗瑪峰的高度。如果紙再薄一些,比如紙厚0、001毫米,對折34次就超過珠穆朗瑪峰的高度了、還記得國王的承諾嗎?第31個格子中的米已經(jīng)是1073741824粒了,后邊的格子中的米就更多了,最后一個格子中的米應(yīng)是粒,用計算器算一下吧(對數(shù)算也行)。
高中數(shù)學(xué)教案5
教學(xué)準(zhǔn)備
教學(xué)目標(biāo)
熟悉兩角和與差的正、余公式的推導(dǎo)過程,提高邏輯推理能力。
掌握兩角和與差的正、余弦公式,能用公式解決相關(guān)問題。
教學(xué)重難點(diǎn)
熟練兩角和與差的.正、余弦公式的正用、逆用和變用技巧。
教學(xué)過程
復(fù)習(xí)
兩角差的余弦公式
用- B代替B看看有什么結(jié)果?
高中數(shù)學(xué)教案6
各位評委、各位專家,大家好!今天,我說課的內(nèi)容是人民教育出版社全日制普通高級中學(xué)教科書(必修)《數(shù)學(xué)》第一章第五節(jié)“一元二次不等式解法”。
下面從教材分析、教學(xué)目標(biāo)分析、教學(xué)重難點(diǎn)分析、教法與學(xué)法、課堂設(shè)計、效果評價六方面進(jìn)行說課。
一、教材分析
。ㄒ唬┙滩牡牡匚缓妥饔
“一元二次不等式解法”既是初中一元一次不等式解法在知識上的延伸和發(fā)展,又是本章集合知識的運(yùn)用與鞏固,也為下一章函數(shù)的定義域和值域教學(xué)作鋪墊,起著鏈條的作用。同時,這部分內(nèi)容較好地反映了方程、不等式、函數(shù)知識的內(nèi)在聯(lián)系和相互轉(zhuǎn)化,蘊(yùn)含著歸納、轉(zhuǎn)化、數(shù)形結(jié)合等豐富的數(shù)學(xué)思想方法,能較好地培養(yǎng)學(xué)生的觀察能力、概括能力、探究能力及創(chuàng)新意識。
。ǘ┙虒W(xué)內(nèi)容
本節(jié)內(nèi)容分2課時學(xué)習(xí)。本課時通過二次函數(shù)的圖象探索一元二次不等式的解集。通過復(fù)習(xí)“三個一次”的關(guān)系,即一次函數(shù)與一元一次方程、一元一次不等式的關(guān)系;以舊帶新尋找“三個二次”的關(guān)系,即二次函數(shù)與一元二次方程、一元二次不等式的關(guān)系;采用“畫、看、說、用”的思維模式,得出一元二次不等式的解集,品味數(shù)學(xué)中的和諧美,體驗(yàn)成功的樂趣。
二、教學(xué)目標(biāo)分析
根據(jù)教學(xué)大綱的要求、本節(jié)教材的特點(diǎn)和高一學(xué)生的認(rèn)知規(guī)律,本節(jié)課的教學(xué)目標(biāo)確定為:
知識目標(biāo)——理解“三個二次”的關(guān)系;掌握看圖象找解集的方法,熟悉一元二次不等式的解法。
能力目標(biāo)——通過看圖象找解集,培養(yǎng)學(xué)生“從形到數(shù)”的轉(zhuǎn)化能力,“從具體到抽象”、“從特殊到一般”的歸納概括能力。
情感目標(biāo)——創(chuàng)設(shè)問題情景,激發(fā)學(xué)生觀察、分析、探求的學(xué)習(xí)激情、強(qiáng)化學(xué)生參與意識及主體作用。
三、重難點(diǎn)分析
一元二次不等式是高中數(shù)學(xué)中最基本的不等式之一,是解決許多數(shù)學(xué)問題的重要工具。本節(jié)課的重點(diǎn)確定為:一元二次不等式的解法。
要把握這個重點(diǎn)。關(guān)鍵在于理解并掌握利用二次函數(shù)的圖象確定一元二次不等式解集的方法——圖象法,其本質(zhì)就是要能利用數(shù)形結(jié)合的思想方法認(rèn)識方程的解,不等式的解集與函數(shù)圖象上對應(yīng)點(diǎn)的橫坐標(biāo)的內(nèi)在聯(lián)系。由于初中沒有專門研究過這類問題,高一學(xué)生比較陌生,要真正掌握有一定的難度。因此,本節(jié)課的難點(diǎn)確定為:“三個二次”的關(guān)系。要突破這個難點(diǎn),讓學(xué)生歸納“三個一次”的關(guān)系作鋪墊。
四、教法與學(xué)法分析
。ㄒ唬⿲W(xué)法指導(dǎo)
教學(xué)矛盾的主要方面是學(xué)生的學(xué)。學(xué)是中心,會學(xué)是目的。因此在教學(xué)中要不斷指導(dǎo)學(xué)生學(xué)會學(xué)習(xí)。本節(jié)課主要是教給學(xué)生“動手畫、動眼看、動腦想、動口說、善提煉、勤鉆研”的研討式學(xué)習(xí)方法,這樣做增加了學(xué)生自主參與,合作交流的機(jī)會,教給了學(xué)生獲取知識的途徑、思考問題的方法,使學(xué)生真正成了教學(xué)的主體;只有這樣做,才能使學(xué)生“學(xué)”有新“思”,“思”有新“得”,“練”有新“獲”,學(xué)生也才會逐步感受到數(shù)學(xué)的美,會產(chǎn)生一種成功感,從而提高學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣;也只有這樣做,課堂教學(xué)才富有時代特色,才能適應(yīng)素質(zhì)教育下培養(yǎng)“創(chuàng)新型”人才的需要。
(二)教法分析
本節(jié)課設(shè)計的指導(dǎo)思想是:現(xiàn)代認(rèn)知心理學(xué)——建構(gòu)主義學(xué)習(xí)理論。
建構(gòu)主義學(xué)習(xí)理論認(rèn)為:應(yīng)把學(xué)習(xí)看成是學(xué)生主動的建構(gòu)活動,學(xué)生應(yīng)與一定的知識背景即情景相聯(lián)系,在實(shí)際情景下進(jìn)行學(xué)習(xí),可以使學(xué)生利用已有知識與經(jīng)驗(yàn)同化和索引出當(dāng)前要學(xué)習(xí)的新知識,這樣獲取的知識,不但便于保持,而且易于遷移到陌生的問題情景中。
本節(jié)課采用“誘思引探教學(xué)法”。把問題作為出發(fā)點(diǎn),指導(dǎo)學(xué)生“畫、看、說、用”。較好地探求一元二次不等式的'解法。
五、課堂設(shè)計
本節(jié)課的教學(xué)設(shè)計充分體現(xiàn)以學(xué)生發(fā)展為本,培養(yǎng)學(xué)生的觀察、概括和探究能力,遵循學(xué)生的認(rèn)知規(guī)律,體現(xiàn)理論聯(lián)系實(shí)際、循序漸進(jìn)和因材施教的教學(xué)原則,通過問題情境的創(chuàng)設(shè),激發(fā)興趣,使學(xué)生在問題解決的探索過程中,由學(xué)會走向會學(xué),由被動答題走向主動探究。
。ㄒ唬﹦(chuàng)設(shè)情景,引出“三個一次”的關(guān)系
本節(jié)課開始,先讓學(xué)生解一元二次方程x2-x-6=0,如果我把“=”改成“”則變成一元二次不等式x2-x-60讓學(xué)生解,學(xué)生肯定感到很突然。但是“思維往往是從驚奇和疑問開始”,這樣直奔主題,目的在于構(gòu)造懸念,激活學(xué)生的思維興趣。
為此,我設(shè)計了以下幾個問題:
1、請同學(xué)們解以下方程和不等式:
、2x-7=0;②2x-70;③2x-70
學(xué)生回答,我板書。
2、我指出:2x-70和2x-70的解實(shí)際上只需利用不等式基本性質(zhì)就容易得到。
3、接著我提出:我們能否利用不等式的基本性質(zhì)來解一元二次不等式呢?學(xué)生可能感到很困惑。
4、為此,我引入一次函數(shù)y=2x-7,借助動畫從圖象上直觀認(rèn)識方程和不等式的解,得出以下三組重要關(guān)系:
①2x-7=0的解恰是函數(shù)y=2x-7的圖象與x軸
交點(diǎn)的橫坐標(biāo)。
②2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的上方的點(diǎn)的橫坐標(biāo)的集合。
、2x-70的解集正是函數(shù)y=2x-7的圖象
在x軸的下方的點(diǎn)的橫坐標(biāo)的集合。
三組關(guān)系的得出,實(shí)際上讓學(xué)生找到了利用“一次函數(shù)的圖象”來解一元一次方程和一元一次不等式的方法。讓學(xué)生看到了解決一元二次不等式的希望,大大激發(fā)了學(xué)生解決新問題的興趣。此時,學(xué)生很自然聯(lián)想到利用函數(shù)y=x2-x-6的圖象來求不等式x2-x-60的解集。
。ǘ┍扰f悟新,引出“三個二次”的關(guān)系
為此我引導(dǎo)學(xué)生作出函數(shù)y=x2-x-6的圖象,按照“看一看 說一說 問一問”的思路進(jìn)行探究。
看函數(shù)y=x2-x-6的圖象并說出:
、俜匠蘹2-x-6=0的解是
x=-2或x=3 ;
、诓坏仁絰2-x-60的解集是
{x|x-2,或x3};
、鄄坏仁絰2-x-60的解集是
{x|-23}。
此時,學(xué)生已經(jīng)沖出了困惑,找到了利用二次函數(shù)的圖象來解一元二次不等式的方法。
學(xué)生沉浸在成功的喜悅中,不妨趁熱打鐵問一問:如果把函數(shù)y=x2-x-6變?yōu)閥=ax2+bx+c(a0),那么圖象與x軸的位置關(guān)系又怎樣呢?(學(xué)生回答:△0時,圖象與x軸有兩個交點(diǎn);△=0時,圖象與x軸只有一個交點(diǎn);△0時,圖象與x輛沒有交點(diǎn)。)請同學(xué)們討論:ax2+bx+c0與ax2+bx+c0的解集與函數(shù)y=ax2+bx+c的圖象有怎樣的關(guān)系?
。ㄈw納提煉,得出“三個二次”的關(guān)系
1、引導(dǎo)學(xué)生根據(jù)圖象與x軸的相對位置關(guān)系,寫出相關(guān)不等式的解集。
2、此時提出:若a0時,怎樣求解不等式ax2+bx+c0及ax2+bx+c0?(經(jīng)討論之后,有的學(xué)生得出:將二次項系數(shù)由負(fù)化正,轉(zhuǎn)化為上述模式求解,教師應(yīng)予以強(qiáng)調(diào);也有的學(xué)生提出畫出相應(yīng)的二次函數(shù)圖象,根據(jù)圖象寫出解集,教師應(yīng)給予肯定。)
(四)應(yīng)用新知,熟練掌握一元二次不等式的解集
借助二次函數(shù)的圖象,得到一元二次不等式的解集,學(xué)生形成了感性認(rèn)識,為鞏固所學(xué)知識,我們一起來完成以下例題:
例1、解不等式2x2-3x-20
解:因?yàn)棣?,方程2x2-3x-2=0的解是
x1= ,x2=2
所以,不等式的解集是
{ x| x ,或x2}
例1的解決達(dá)到了兩個目的:一是鞏固了一元二次不等式解集的應(yīng)用;二是規(guī)范了一元二次不等式的解題格式。
下面我們接著學(xué)習(xí)課本例2。
例2 解不等式-3x2+6x2
課本例2的出現(xiàn)恰當(dāng)好處,一方面突出了“對于二次項系數(shù)是負(fù)數(shù)(即a0)的一元二次不等式,可以先把二次項系數(shù)化為正數(shù),再求解”;另一方面,學(xué)生對此例的解答極易出現(xiàn)寫錯解集(如出現(xiàn)“或”與“且”的錯誤)。
通過例1、例2的解決,學(xué)生與我一起總結(jié)了解一元二次不等式的一般步驟:一化正—二算△—三求根—四寫解集。
例3 解不等式4x2-4x+10
例4 解不等式-x2+2x-30
分別突出了“△=0”、“△0”對不等式解集的影響。這兩例由學(xué)生練習(xí),教師巡視、指導(dǎo),講評學(xué)生完成情況,尋找學(xué)生中的閃光點(diǎn),給予熱情表揚(yáng)。
4道例題,具有典型性、層次性和學(xué)生的可接受性。為了避免學(xué)生學(xué)后“一團(tuán)亂麻”、“一盤散沙”的局面,我和學(xué)生一起總結(jié)。
。ㄎ澹┛偨Y(jié)
解一元二次不等式的“四部曲”:
(1)把二次項的系數(shù)化為正數(shù)
(2)計算判別式Δ
(3)解對應(yīng)的一元二次方程
(4)根據(jù)一元二次方程的根,結(jié)合圖像(或口訣),寫出不等式的解集。概括為:一化正→二算Δ→三求根→四寫解集
。┳鳂I(yè)布置
為了使所有學(xué)生鞏固所學(xué)知識,我布置了“必做題”;又為學(xué)有余力者留有自由發(fā)展的空間,我布置了“探究題”。
。1)必做題:習(xí)題1.5的1、3題
(2)探究題:①若a、b不同時為零,記ax2+bx+c=0的解集為P,ax2+bx+c0的解集為M,ax2+bx+c0的解集為N,那么P∪M∪N=______________;②已知不等式(k2+4k-5)x2+4(1-k)x+30的解集是R,求實(shí)數(shù)k的取值范圍。
。ㄆ撸┌鍟O(shè)計
一元二次不等式解法(1)
五、教學(xué)效果評價
本節(jié)課立足課本,著力挖掘,設(shè)計合理,層次分明。以“三個一次關(guān)系→三個二次關(guān)系→一元二次不等式解法”為主線,以“從形到數(shù),從具體到抽象,從特殊到一般”為靈魂,以“畫、看、說、用”為特色,把握重點(diǎn),突破難點(diǎn)。在教學(xué)思想上既注重知識形成過程的教學(xué),還特別突出學(xué)生學(xué)習(xí)方法的指導(dǎo),探究能力的訓(xùn)練,創(chuàng)新精神的培養(yǎng),引導(dǎo)學(xué)生發(fā)現(xiàn)數(shù)學(xué)的美,體驗(yàn)求知的樂趣。
高中數(shù)學(xué)教案7
一、教材分析
1、教材地位和作用:二面角是我們?nèi)粘I钪薪?jīng)常見到的、很普通的一個空間圖形!岸娼恰笔侨私贪妗稊(shù)學(xué)》第二冊(下B)中9.7的內(nèi)容。它是在學(xué)生學(xué)過兩條異面直線所成的角、直線和平面所成角、又要重點(diǎn)研究的一種空間的角,它是為了研究兩個平面的垂直而提出的一個概念,也是學(xué)生進(jìn)一步研究多面體的基礎(chǔ)。因此,它起著承上啟下的作用。通過本節(jié)課的學(xué)習(xí)還對學(xué)生系統(tǒng)地掌握直線和平面的知識乃至于創(chuàng)新能力的培養(yǎng)都具有十分重要的意義。
2、教學(xué)目標(biāo):
知識目標(biāo):(1)正確理解二面角及其平面角的概念,并能初步運(yùn)用它們解決實(shí)際問題。
(2)進(jìn)一步培養(yǎng)學(xué)生把空間問題轉(zhuǎn)化為平面問題的化歸思想。
能力目標(biāo):(1)突出對類比、直覺、發(fā)散等探索性思維的培養(yǎng),從而提高學(xué)生的創(chuàng)新能力。(2)通過對圖形的觀察、分析、比較和操作來強(qiáng)化學(xué)生的動手操作能力。
德育目標(biāo):(1)使學(xué)生認(rèn)識到數(shù)學(xué)知識來自實(shí)踐,并服務(wù)于實(shí)踐,增強(qiáng)學(xué)生應(yīng)用數(shù)學(xué)的意識(2)通過揭示線線、線面、面面之間的內(nèi)在聯(lián)系,進(jìn)一步培養(yǎng)學(xué)生聯(lián)系的辯證唯物主義觀點(diǎn)。
情感目標(biāo):在平等的教學(xué)氛圍中,通過學(xué)生之間、師生之間的交流、合作和評價,拉近學(xué)生之間、師生之間的情感距離。
3、重點(diǎn)、難點(diǎn):
重點(diǎn):“二面角”和“二面角的平面角”的概念
難點(diǎn):“二面角的平面角”概念的形成過程
二、教法分析
1、教學(xué)方法:在引入課題時,我采用多媒體、實(shí)物演示法,在新課探究中采用問題啟導(dǎo)、活動探究和類比發(fā)現(xiàn)法,在形成技能時以訓(xùn)練法、探究研討法為主。
。、教學(xué)控制與調(diào)節(jié)的措施:本節(jié)課由于充分運(yùn)用了多媒體和實(shí)物教具,預(yù)計學(xué)生對二面角及二面角平面角的概念能夠理解,根據(jù)學(xué)生及教學(xué)的實(shí)際情況,估計二面角的具體求法一節(jié)課內(nèi)完成有一定的困難,所以將其放在下節(jié)課。
3、教學(xué)手段:教學(xué)手段的現(xiàn)代化有利于提高課堂效益,有利于創(chuàng)新人才的培養(yǎng),根據(jù)本節(jié)課的教學(xué)需要,確定利用多媒體課件來輔助教學(xué);此外,為加強(qiáng)直觀教學(xué),還要預(yù)先做好一些二面角的模型。
三、學(xué)法指導(dǎo)
1、樂學(xué):在整個學(xué)習(xí)過程中學(xué)生要保持強(qiáng)烈的好奇心和求知欲,不斷強(qiáng)化自己的創(chuàng)新意識,全身心地投入到學(xué)習(xí)中去,成為學(xué)習(xí)的主人。
2、學(xué)會:在掌握基礎(chǔ)知識的同時,學(xué)生要注意領(lǐng)會化歸、類比聯(lián)想等數(shù)學(xué)思想方法的運(yùn)用,學(xué)會建立完善的認(rèn)知結(jié)構(gòu)。
3、會學(xué):通過自己親身參與,學(xué)生要領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法,從而既學(xué)到知識,又學(xué)會創(chuàng)新,既能解決問題,更能發(fā)現(xiàn)問題。
四、教學(xué)過程
心理學(xué)研究表明,當(dāng)學(xué)生明確數(shù)學(xué)概念的學(xué)習(xí)目的和意義時,就會對概念的學(xué)習(xí)產(chǎn)生濃厚的興趣。創(chuàng)設(shè)問題情境,激發(fā)了學(xué)生的創(chuàng)新意識,營造了創(chuàng)新思維的氛圍。
(一)、二面角
1、揭示概念產(chǎn)生背景。
問題情境1、在平面幾何中“角”是怎樣定義的?
問題情境2、在立體幾何中我們還學(xué)習(xí)了哪些角?
問題情境3、運(yùn)用多媒體和身邊的實(shí)例,展示我們遇到的另一種空間的角——二面角(板書課題)。
通過這三個問題,打開了學(xué)生的原有認(rèn)知結(jié)構(gòu),為知識的創(chuàng)新做好了準(zhǔn)備;同時也讓學(xué)生領(lǐng)會到,二面角這一概念的產(chǎn)生是因?yàn)樗c我們的生活密不可分,激發(fā)學(xué)生的求知欲。2、展現(xiàn)概念形成過程。
問題情境4、那么,應(yīng)該如何定義二面角呢?
創(chuàng)設(shè)這個問題情境,為學(xué)生創(chuàng)新思維的展開提供了空間。引導(dǎo)學(xué)生回憶平面幾何中“角”這一概念的引入過程。教師應(yīng)注意多讓學(xué)生說,對于學(xué)生的創(chuàng)新意識和創(chuàng)新結(jié)果,教師要給與積極的評價。
問題情境5、同學(xué)們能舉出一些二面角的實(shí)例嗎?通過實(shí)際運(yùn)用,可以促使學(xué)生更加深刻地理解概念。
。ǘ、二面角的平面角
1、揭示概念產(chǎn)生背景。平面幾何中可以把角理解為是一個旋轉(zhuǎn)量,同樣一個二面角也可以看作是一個半平面以其棱為軸旋轉(zhuǎn)而成的,也是一個旋轉(zhuǎn)量。說明二面角不僅有大小,而且其大小是唯一確定的。平面
與平面的位置關(guān)系,總的說來只有相交或平行兩種情況,為了對相交平面的相互位置作進(jìn)一步的探討,我們有必要來研究二面角的度量問題。
問題情境6、二面角的大小應(yīng)該怎么度量?能否轉(zhuǎn)化為平面角來處理?這樣就從度量二面角大小的需要上揭示了二面角的平面角概念產(chǎn)生的背景。
2、展現(xiàn)概念形成過程
(1)、類比。教師啟發(fā),尋找類比聯(lián)想的對象。
問題情境7、我們以前碰到過類似的問題嗎?引導(dǎo)學(xué)生回憶前面所學(xué)過的兩種空間角的定義,電腦演示以提高效率。
問題情境8、兩定義的共同點(diǎn)是什么?生:空間角總是轉(zhuǎn)化為平面的角,并且這個角是唯一確定的。
問題情境9、這個平面的角的頂點(diǎn)及兩邊是如何確定的?
。2)、提出猜想:二面角的大小也可通過平面的角來定義。對學(xué)生提出的猜想,教師應(yīng)該給予充分的肯定,以培養(yǎng)他們大膽猜想的意識和習(xí)慣,這對強(qiáng)化他們的創(chuàng)新意識大有幫助。
問題情境10、那么,這個角的頂點(diǎn)及兩邊應(yīng)如何確定呢?生:頂點(diǎn)放在棱上,兩邊分別放在兩個面內(nèi)。這也是學(xué)生直覺思維的結(jié)果。
(3)、探索實(shí)驗(yàn)。通過實(shí)驗(yàn),激發(fā)了學(xué)生的學(xué)習(xí)興趣,培養(yǎng)了學(xué)生的動手操作能力。
。4)、繼續(xù)探索,得到定義。
問題情境11、那么,怎樣使這個角的大小唯一確定呢?師生共同探討后發(fā)現(xiàn),角的`頂點(diǎn)確定后,要使此角的大小唯一確定,只須使它的兩條邊在平面內(nèi)唯一確定,聯(lián)想到平面內(nèi)過直線上一點(diǎn)的垂線的唯一性,由此發(fā)現(xiàn)二面角的大小的一種描述方法。
。5)、自我驗(yàn)證:要求學(xué)生閱讀課本上的定義。并說明定義的合理性,教師作適當(dāng)?shù)囊龑?dǎo),并加以理論證明。
。ㄈ、二面角及其平面角的畫法
主要分為直立式和平臥式兩種,用電腦《幾何畫板》作圖。
(四)、范例分析
為鞏固學(xué)生所學(xué)知識,由于時間的關(guān)系設(shè)置了一道例題。來源于實(shí)際生活,不但培養(yǎng)了學(xué)生分析問題和解決問題的能力,也讓學(xué)生領(lǐng)會到數(shù)學(xué)概念來自生活實(shí)際,并服務(wù)于生活實(shí)際,從而增強(qiáng)他們應(yīng)用數(shù)學(xué)的意識。
例:一張邊長為10厘米的正三角形紙片ABc,以它的高AD為折痕,折成一個1200二面角,求此時B、c兩點(diǎn)間的距離。
分析:涉及二面角的計算問題,關(guān)鍵是找出(或作出)該二面角的平面角。引導(dǎo)學(xué)生充分利用已知圖形的性質(zhì),最后發(fā)現(xiàn)可由定義找出該二面角的平面角?勺寣W(xué)生先做,為調(diào)動學(xué)生的積極性,并增加學(xué)生的參與感,活躍課堂的氣氛,教師可給學(xué)生板演的機(jī)會。教師講評時強(qiáng)調(diào)解題規(guī)范即必須證明∠BDc是二面角B—AD—c的平面角。
變式訓(xùn)練:圖中共有幾個二面角?能求出它們的大小嗎?根據(jù)課堂實(shí)際情況,本題的變式訓(xùn)練也可作為課后思考題。
題后反思:(1)解題過程中必須證明∠BDc是二面角B—AD—c的平面角。
(2)求二面角的平面角的方法是:先找(或作)——后證——再解(三角形)
。ㄎ澹、練習(xí)、小結(jié)與作業(yè)
練習(xí):習(xí)題9.7的第3題
小結(jié)在復(fù)習(xí)完二面角及其平面角的概念后,要求學(xué)生對空間中三種角加以比較、歸納,以促成學(xué)生建立起空間中角這一概念系統(tǒng)。同時要求學(xué)生對本節(jié)課的學(xué)習(xí)方法進(jìn)行總結(jié),領(lǐng)會復(fù)習(xí)類比和深入研究這兩種知識創(chuàng)新的方法。
作業(yè):習(xí)題9.7的第4題
思考題:見例題
五、板書設(shè)計(見課件)
以上是我對《二面角》授課的初步設(shè)想,不足之處,懇請大家批評指正,謝謝!
高中數(shù)學(xué)教案8
[核心必知]
1、預(yù)習(xí)教材,問題導(dǎo)入
根據(jù)以下提綱,預(yù)習(xí)教材P6~P9,回答下列問題、
。1)常見的程序框有哪些?
提示:終端框(起止框),輸入、輸出框,處理框,判斷框、
。2)算法的基本邏輯結(jié)構(gòu)有哪些?
提示:順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu)、
2、歸納總結(jié),核心必記
。1)程序框圖
程序框圖又稱流程圖,是一種用程序框、流程線及文字說明來表示算法的圖形、
在程序框圖中,一個或幾個程序框的組合表示算法中的一個步驟;帶有方向箭頭的流程線將程序框連接起來,表示算法步驟的執(zhí)行順序、
。2)常見的程序框、流程線及各自表示的功能
圖形符號名稱功能
終端框(起止框)表示一個算法的起始和結(jié)束
輸入、輸出框表示一個算法輸入和輸出的信息
處理框(執(zhí)行框)賦值、計算
判斷框判斷某一條件是否成立,成立時在出口處標(biāo)明“是”或“Y”;不成立時標(biāo)明“否”或“N”
流程線連接程序框
○連接點(diǎn)連接程序框圖的兩部分
。3)算法的基本邏輯結(jié)構(gòu)
、偎惴ǖ娜N基本邏輯結(jié)構(gòu)
算法的三種基本邏輯結(jié)構(gòu)為順序結(jié)構(gòu)、條件結(jié)構(gòu)和循環(huán)結(jié)構(gòu),盡管算法千差萬別,但都是由這三種基本邏輯結(jié)構(gòu)構(gòu)成的
、陧樞蚪Y(jié)構(gòu)
順序結(jié)構(gòu)是由若干個依次執(zhí)行的步驟組成的`這是任何一個算法都離不開的基本結(jié)構(gòu),用程序框圖表示為:
[問題思考]
。1)一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結(jié)束嗎?
提示:由程序框圖的概念可知一個完整的程序框圖一定是以起止框開始,同時又以起止框表示結(jié)束、
。2)順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)嗎?
提示:根據(jù)算法基本邏輯結(jié)構(gòu)可知順序結(jié)構(gòu)是任何算法都離不開的基本結(jié)構(gòu)、
[課前反思]
通過以上預(yù)習(xí),必須掌握的幾個知識點(diǎn):
。1)程序框圖的概念:
。2)常見的程序框、流程線及各自表示的功能:
。3)算法的三種基本邏輯結(jié)構(gòu):
。4)順序結(jié)構(gòu)的概念及其程序框圖的表示:
問題背景:計算1×2+3×4+5×6+…+99×100。
[思考1]能否設(shè)計一個算法,計算這個式子的值。
提示:能。
[思考2]能否采用更簡潔的方式表述上述算法過程。
提示:能,利用程序框圖。
[思考3]畫程序框圖時應(yīng)遵循怎樣的規(guī)則?
名師指津:
(1)使用標(biāo)準(zhǔn)的框圖符號。
(2)框圖一般按從上到下、從左到右的方向畫。
。3)除判斷框外,其他程序框圖的符號只有一個進(jìn)入點(diǎn)和一個退出點(diǎn),判斷框是一個具有超過一個退出點(diǎn)的程序框。
。4)在圖形符號內(nèi)描述的語言要非常簡練清楚。
。5)流程線不要忘記畫箭頭,因?yàn)樗欠从沉鞒虉?zhí)行先后次序的,如果不畫出箭頭就難以判斷各框的執(zhí)行順序。
高中數(shù)學(xué)教案9
教學(xué)目的:
掌握圓的標(biāo)準(zhǔn)方程,并能解決與之有關(guān)的問題
教學(xué)重點(diǎn):
圓的標(biāo)準(zhǔn)方程及有關(guān)運(yùn)用
教學(xué)難點(diǎn):
標(biāo)準(zhǔn)方程的'靈活運(yùn)用
教學(xué)過程:
一、導(dǎo)入新課,探究標(biāo)準(zhǔn)方程
二、掌握知識,鞏固練習(xí)
練習(xí):
1、說出下列圓的方程
、艌A心(3,—2)半徑為5
、茍A心(0,3)半徑為3
2、指出下列圓的圓心和半徑
、牛▁—2)2+(y+3)2=3
⑵x2+y2=2
、莤2+y2—6x+4y+12=0
3、判斷3x—4y—10=0和x2+y2=4的位置關(guān)系
4、圓心為(1,3),并與3x—4y—7=0相切,求這個圓的方程
三、引伸提高,講解例題
例1、圓心在y=—2x上,過p(2,—1)且與x—y=1相切求圓的方程(突出待定系數(shù)的數(shù)學(xué)方法)
練習(xí):1、某圓過(—2,1)、(2,3),圓心在x軸上,求其方程。
2、某圓過A(—10,0)、B(10,0)、C(0,4),求圓的方程。
例2:某圓拱橋的跨度為20米,拱高為4米,在建造時每隔4米加一個支柱支撐,求A2P2的長度。
例3、點(diǎn)M(x0,y0)在x2+y2=r2上,求過M的圓的切線方程(一題多解,訓(xùn)練思維)
四、小結(jié)練習(xí)P771,2,3,4
五、作業(yè)P811,2,3,4
高中數(shù)學(xué)教案10
猴子搬香蕉
一個小猴子邊上有100根香蕉,它要走過50米才能到家,每次它最多搬50根香蕉,(多了就被壓死了),它每走1米就要吃掉一根,請問它最多能把多少根香蕉搬到家里?
解答:
100只香蕉分兩次,一次運(yùn)50只,走1米,再回去搬另外50只,這樣走了1米的時候,前50只吃掉了兩只,后50只吃掉了1只,剩下48+49只;兩米的時候剩下46+48只;...到16米的時候剩下(50-2×16)+(50-16)=18+34只;17米的時候剩下16+33只,共49只;然后把剩下的這49只一次運(yùn)回去,要走剩下的33米,每米吃一個,到家還有16個香蕉。
河岸的距離
兩艘輪船在同一時刻駛離河的兩岸,一艘從A駛往B,另一艘從B開往A,其中一艘開得比另一艘快些,因此它們在距離較近的岸500公里處相遇。到達(dá)預(yù)定地點(diǎn)后,每艘船要停留15分鐘,以便讓乘客上下船,然后它們又返航。這兩艘渡輪在距另一岸100公里處重新相遇。試問河有多寬?
解答:
當(dāng)兩艘渡輪在x點(diǎn)相遇時,它們距A岸500公里,此時它們走過的距離總和等于河的寬度。當(dāng)它們雙方抵達(dá)對岸時,走過的總長度
等于河寬的兩倍。在返航中,它們在z點(diǎn)相遇,這時兩船走過的距離之和等于河寬的三倍,所以每一艘渡輪現(xiàn)在所走的距離應(yīng)該等于它們第一次相遇時所走的距離的三倍。在兩船第一次相遇時,有一艘渡輪走了500公里,所以當(dāng)它到達(dá)z點(diǎn)時,已經(jīng)走了三倍的距離,即1500公里,這個距離比河的寬度多100公里。所以,河的寬度為1400公里。每艘渡輪的上、下客時間對答案毫無影響。
變量交換
不使用任何其他變量,交換a,b變量的值?
分析與解答
a = a+b
b = a-b
a= a-b
步行時間
某公司的辦公大樓在市中心,而公司總裁溫斯頓的家在郊區(qū)一個小鎮(zhèn)的附近。他每次下班以后都是乘同一次市郊火車回小鎮(zhèn)。小鎮(zhèn)車站離家還有一段距離,他的私人司機(jī)總是在同一時刻從家里開出轎車,去小鎮(zhèn)車站接總裁回家。由于火車與轎車都十分準(zhǔn)時,因此,火車與轎車每次都是在同一時刻到站。
有一次,司機(jī)比以往遲了半個小時出發(fā)。溫斯頓到站后,找不到
他的車子,又怕回去晚了遭老婆罵,便急匆匆沿著公路步行往家里走,途中遇到他的轎車正風(fēng)馳電掣而來,立即招手示意停車,跳上車子后也顧不上罵司機(jī),命其馬上掉頭往回開;氐郊抑,果不出所料,他老婆大發(fā)雷霆:“又到哪兒鬼混去啦!你比以往足足晚回了22分鐘??”。溫斯頓步行了多長時間?
解答:
假如溫斯頓一直在車站等候,那么由于司機(jī)比以往晚了半小時出發(fā),因此,也將晚半小時到達(dá)車站。也就是說,溫斯頓將在車站空等半小時,等他的轎車到達(dá)后坐車回家,從而他將比以往晚半小時到家。而現(xiàn)在溫斯頓只比平常晚22分鐘到家,這縮短下來的8分鐘是如果總裁在火車站死等的.話,司機(jī)本來要花在從現(xiàn)在遇到溫斯頓總裁的地點(diǎn)到火車站再回到這個地點(diǎn)上的時間。這意味著,如果司機(jī)開車從現(xiàn)在遇到總裁的地點(diǎn)趕到火車站,單程所花的時間將為4分鐘。因此,如果溫斯頓等在火車站,再過4分鐘,他的轎車也到了。也就是說,他如果等在火車站,那么他也已經(jīng)等了30-4=26分鐘了。但是懼內(nèi)的溫斯頓總裁畢竟沒有等,他心急火燎地趕路,把這26分鐘全都花在步行上了。
因此,溫斯頓步行了26分鐘。
付清欠款
有四個人借錢的數(shù)目分別是這樣的:阿伊庫向貝爾借了10美元;
貝爾向查理借了20美元;查理向迪克借了30美元;迪克又向阿伊庫借了40美元。碰巧四個人都在場,決定結(jié)個賬,請問最少只需要動用多少美金就可以將所有欠款一次付清?
解答:
貝爾、查理、迪克各自拿出10美元給阿伊庫就可解決問題了。這樣的話只動用了30美元。最笨的辦法就是用100美元來一一付清。
貝爾必須拿出10美元的欠額,查理和迪克也一樣;而阿伊庫則要收回借出的30美元。再復(fù)雜的問題只要有條理地分析就會很簡單。養(yǎng)成經(jīng)常性地歸納整理、摸索實(shí)質(zhì)的好習(xí)慣。
一美元紙幣
注:美國貨幣中的硬幣有1美分、5美分、10美分、25美分、50美分和1美元這幾種面值。
一家小店剛開始營業(yè),店堂中只有三位男顧客和一位女店主。當(dāng)這三位男士同時站起來付帳的時候,出現(xiàn)了以下的情況:
。1)這四個人每人都至少有一枚硬幣,但都不是面值為1美分或1美元的硬幣。
(2)這四人中沒有一人能夠兌開任何一枚硬幣。
。3)一個叫盧的男士要付的賬單款額最大,一位叫莫的男士要
付的帳單款額其次,一個叫內(nèi)德的男士要付的賬單款額最小。
。4)每個男士無論怎樣用手中所持的硬幣付賬,女店主都無法找清零錢。
。5)如果這三位男士相互之間等值調(diào)換一下手中的硬幣,則每個人都可以付清自己的賬單而無需找零。
。6)當(dāng)這三位男士進(jìn)行了兩次等值調(diào)換以后,他們發(fā)現(xiàn)手中的硬幣與各人自己原先所持的硬幣沒有一枚面值相同。
(7)隨著事情的進(jìn)一步發(fā)展,又出現(xiàn)如下的情況:
。8)在付清了賬單而且有兩位男士離開以后,留下的男士又買了一些糖果。這位男士本來可以用他手中剩下的硬幣付款,可是女店主卻無法用她現(xiàn)在所持的硬幣找清零錢。于是,這位男士用1美元的紙幣付了糖果錢,但是現(xiàn)在女店主不得不把她的全部硬幣都找給了他。
現(xiàn)在,請你不要管那天女店主怎么會在找零上屢屢遇到麻煩,這三位男士中誰用1美元的紙幣付了糖果錢?
解答:
對題意的以下兩點(diǎn)這樣理解:
。2)中不能換開任何一個硬幣,指的是如果任何一個人不能有2個5分,否則他能換1個10分硬幣。
。6)中指如果A,B換過,并且A,C換過,這就是兩次交換。
高中數(shù)學(xué)教案11
一、教學(xué)目標(biāo)
知識與技能:
理解任意角的概念(包括正角、負(fù)角、零角)與區(qū)間角的概念。
過程與方法:
會建立直角坐標(biāo)系討論任意角,能判斷象限角,會書寫終邊相同角的集合;掌握區(qū)間角的集合的書寫。
情感態(tài)度與價值觀:
1、提高學(xué)生的推理能力;
2、培養(yǎng)學(xué)生應(yīng)用意識。
二、教學(xué)重點(diǎn)、難點(diǎn):
教學(xué)重點(diǎn):
任意角概念的理解;區(qū)間角的集合的書寫。
教學(xué)難點(diǎn):
終邊相同角的集合的表示;區(qū)間角的集合的書寫。
三、教學(xué)過程
。ㄒ唬⿲(dǎo)入新課
1、回顧角的定義
、俳堑.第一種定義是有公共端點(diǎn)的兩條射線組成的圖形叫做角。
②角的第二種定義是角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
(二)教學(xué)新課
1、角的有關(guān)概念:
①角的定義:
角可以看成平面內(nèi)一條射線繞著端點(diǎn)從一個位置旋轉(zhuǎn)到另一個位置所形成的圖形。
、诮堑拿Q:
注意:
、旁诓灰鸹煜那闆r下,“角α ”或“∠α ”可以簡化成“α ”;
、屏憬堑慕K邊與始邊重合,如果α是零角α =0°;
、墙堑母拍罱(jīng)過推廣后,已包括正角、負(fù)角和零角。
、菥毩(xí):請說出角α、β、γ各是多少度?
2、象限角的概念:
、俣x:若將角頂點(diǎn)與原點(diǎn)重合,角的始邊與x軸的非負(fù)半軸重合,那么角的終邊(端點(diǎn)除外)在第幾象限,我們就說這個角是第幾象限角。
例1、如圖⑴⑵中的角分別屬于第幾象限角?
高中數(shù)學(xué)教案12
教學(xué)目標(biāo):
1、理解并掌握曲線在某一點(diǎn)處的切線的概念;
2、理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;
3、理解切線概念實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化
問題的能力及數(shù)形結(jié)合思想。
教學(xué)重點(diǎn):
理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法。
教學(xué)難點(diǎn):
用“無限逼近”、“局部以直代曲”的思想理解某一點(diǎn)處切線的斜率。
教學(xué)過程:
一、問題情境
1、問題情境。
如何精確地刻畫曲線上某一點(diǎn)處的變化趨勢呢?
如果將點(diǎn)P附近的曲線放大,那么就會發(fā)現(xiàn),曲線在點(diǎn)P附近看上去有點(diǎn)像是直線。
如果將點(diǎn)P附近的曲線再放大,那么就會發(fā)現(xiàn),曲線在點(diǎn)P附近看上去幾乎成了直線。事實(shí)上,如果繼續(xù)放大,那么曲線在點(diǎn)P附近將逼近一條確定的直線,該直線是經(jīng)過點(diǎn)P的所有直線中最逼近曲線的一條直線。
因此,在點(diǎn)P附近我們可以用這條直線來代替曲線,也就是說,點(diǎn)P附近,曲線可以看出直線(即在很小的范圍內(nèi)以直代曲)。
2、探究活動。
如圖所示,直線l1,l2為經(jīng)過曲線上一點(diǎn)P的兩條直線,
(1)試判斷哪一條直線在點(diǎn)P附近更加逼近曲線;
。2)在點(diǎn)P附近能作出一條比l1,l2更加逼近曲線的'直線l3嗎?
。3)在點(diǎn)P附近能作出一條比l1,l2,l3更加逼近曲線的直線嗎?
二、建構(gòu)數(shù)學(xué)
切線定義: 如圖,設(shè)Q為曲線C上不同于P的一點(diǎn),直線PQ稱為曲線的割線。 隨著點(diǎn)Q沿曲線C向點(diǎn)P運(yùn)動,割線PQ在點(diǎn)P附近逼近曲線C,當(dāng)點(diǎn)Q無限逼近點(diǎn)P時,直線PQ最終就成為經(jīng)過點(diǎn)P處最逼近曲線的直線l,這條直線l也稱為曲線在點(diǎn)P處的切線。這種方法叫割線逼近切線。
思考:如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
三、數(shù)學(xué)運(yùn)用
例1 試求在點(diǎn)(2,4)處的切線斜率。
解法一 分析:設(shè)P(2,4),Q(xQ,f(xQ)),
則割線PQ的斜率為:
當(dāng)Q沿曲線逼近點(diǎn)P時,割線PQ逼近點(diǎn)P處的切線,從而割線斜率逼近切線斜率;
當(dāng)Q點(diǎn)橫坐標(biāo)無限趨近于P點(diǎn)橫坐標(biāo)時,即xQ無限趨近于2時,kPQ無限趨近于常數(shù)4。
從而曲線f(x)=x2在點(diǎn)(2,4)處的切線斜率為4。
解法二 設(shè)P(2,4),Q(xQ,xQ2),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)4,從而曲線f(x)=x2,在點(diǎn)(2,4)處的切線斜率為4。
練習(xí) 試求在x=1處的切線斜率。
解:設(shè)P(1,2),Q(1+Δx,(1+Δx)2+1),則割線PQ的斜率為:
當(dāng)?x無限趨近于0時,kPQ無限趨近于常數(shù)2,從而曲線f(x)=x2+1在x=1處的切線斜率為2。
小結(jié) 求曲線上一點(diǎn)處的切線斜率的一般步驟:
。1)找到定點(diǎn)P的坐標(biāo),設(shè)出動點(diǎn)Q的坐標(biāo);
。2)求出割線PQ的斜率;
。3)當(dāng)時,割線逼近切線,那么割線斜率逼近切線斜率。
思考 如上圖,P為已知曲線C上的一點(diǎn),如何求出點(diǎn)P處的切線方程?
解 設(shè)
所以,當(dāng)無限趨近于0時,無限趨近于點(diǎn)處的切線的斜率。
變式訓(xùn)練
1。已知,求曲線在處的切線斜率和切線方程;
2。已知,求曲線在處的切線斜率和切線方程;
3。已知,求曲線在處的切線斜率和切線方程。
課堂練習(xí)
已知,求曲線在處的切線斜率和切線方程。
四、回顧小結(jié)
1、曲線上一點(diǎn)P處的切線是過點(diǎn)P的所有直線中最接近P點(diǎn)附近曲線的直線,則P點(diǎn)處的變化趨勢可以由該點(diǎn)處的切線反映(局部以直代曲)。
2、根據(jù)定義,利用割線逼近切線的方法, 可以求出曲線在一點(diǎn)處的切線斜率和方程。
五、課外作業(yè)
高中數(shù)學(xué)教案13
教學(xué)目標(biāo):
。1)掌握直線方程的一般形式,掌握直線方程幾種形式之間的互化.
。2)理解直線與二元一次方程的關(guān)系及其證明
。3)培養(yǎng)學(xué)生抽象概括能力、分類討論能力、逆向思維的習(xí)慣和形成特殊與一般辯證統(tǒng)一的觀點(diǎn).
教學(xué)重點(diǎn)、難點(diǎn):直線方程的一般式.直線與二元一次方程 ( 、 不同時為0)的對應(yīng)關(guān)系及其證明.
教學(xué)用具:計算機(jī)
教學(xué)方法:啟發(fā)引導(dǎo)法,討論法
教學(xué)過程:
下面給出教學(xué)實(shí)施過程設(shè)計的簡要思路:
教學(xué)設(shè)計思路:
。ㄒ唬┮氲脑O(shè)計
前邊學(xué)習(xí)了如何根據(jù)所給條件求出直線方程的方法,看下面問題:
問:說出過點(diǎn) (2,1),斜率為2的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 ,屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答,并糾正學(xué)生中不規(guī)范的表述.再看一個問題:
問:求出過點(diǎn) , 的直線的方程,并觀察方程屬于哪一類,為什么?
答:直線方程是 (或其它形式),也屬于二元一次方程,因?yàn)槲粗獢?shù)有兩個,它們的最高次數(shù)為一次.
肯定學(xué)生回答后強(qiáng)調(diào)“也是二元一次方程,都是因?yàn)槲粗獢?shù)有兩個,它們的最高次數(shù)為一次”.
啟發(fā):你在想什么(或你想到了什么)?誰來談?wù)?各小組可以討論討論.
學(xué)生紛紛談出自己的想法,教師邊評價邊啟發(fā)引導(dǎo),使學(xué)生的認(rèn)識統(tǒng)一到如下問題:
【問題1】“任意直線的方程都是二元一次方程嗎?”
。ǘ┍竟(jié)主體內(nèi)容教學(xué)的設(shè)計
這是本節(jié)課要解決的第一個問題,如何解決?自己先研究研究,也可以小組研究,確定解決問題的思路.
學(xué)生或獨(dú)立研究,或合作研究,教師巡視指導(dǎo).
經(jīng)過一定時間的研究,教師組織開展集體討論.首先讓學(xué)生陳述解決思路或解決方案:
思路一:…
思路二:…
……
教師組織評價,確定最優(yōu)方案(其它待課下研究)如下:
按斜率是否存在,任意直線 的位置有兩種可能,即斜率 存在或不存在.
當(dāng) 存在時,直線 的截距 也一定存在,直線 的方程可表示為 ,它是二元一次方程.
當(dāng) 不存在時,直線 的方程可表示為 形式的方程,它是二元一次方程嗎?
學(xué)生有的.認(rèn)為是有的認(rèn)為不是,此時教師引導(dǎo)學(xué)生,逐步認(rèn)識到把它看成二元一次方程的合理性:
平面直角坐標(biāo)系中直線 上點(diǎn)的坐標(biāo)形式,與其它直線上點(diǎn)的坐標(biāo)形式?jīng)]有任何區(qū)別,根據(jù)直線方程的概念,方程 解的形式也是二元方程的解的形式,因此把它看成形如 的二元一次方程是合理的.
綜合兩種情況,我們得出如下結(jié)論:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的關(guān)于 、 的二元一次方程.
至此,我們的問題1就解決了.簡單點(diǎn)說就是:直線方程都是二元一次方程.而且這個方程一定可以表示成 或 的形式,準(zhǔn)確地說應(yīng)該是“要么形如 這樣,要么形如 這樣的方程”.
同學(xué)們注意:這樣表達(dá)起來是不是很啰嗦,能不能有一個更好的表達(dá)?
學(xué)生們不難得出:二者可以概括為統(tǒng)一的形式.
這樣上邊的結(jié)論可以表述如下:
在平面直角坐標(biāo)系中,對于任何一條直線,都有一條表示這條直線的形如 (其中 、 不同時為0)的二元一次方程.
啟發(fā):任何一條直線都有這種形式的方程.你是否覺得還有什么與之相關(guān)的問題呢?
【問題2】任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線嗎?
不難看出上邊的結(jié)論只是直線與方程相互關(guān)系的一個方面,這個問題是它的另一方面.這是顯然的嗎?不是,因此也需要像剛才一樣認(rèn)真地研究,得到明確的結(jié)論.那么如何研究呢?
師生共同討論,評價不同思路,達(dá)成共識:
回顧上邊解決問題的思路,發(fā)現(xiàn)原路返回就是非常好的思路,即方程 (其中 、 不同時為0)系數(shù) 是否為0恰好對應(yīng)斜率 是否存在,即
(1)當(dāng) 時,方程可化為
這是表示斜率為 、在 軸上的截距為 的直線.
。2)當(dāng) 時,由于 、 不同時為0,必有 ,方程可化為
這表示一條與 軸垂直的直線.
因此,得到結(jié)論:
在平面直角坐標(biāo)系中,任何形如 (其中 、 不同時為0)的二元一次方程都表示一條直線.
為方便,我們把 (其中 、 不同時為0)稱作直線方程的一般式是合理的.
【動畫演示】
演示“直線各參數(shù)”文件,體會任何二元一次方程都表示一條直線.
至此,我們的第二個問題也圓滿解決,而且我們還發(fā)現(xiàn)上述兩個問題其實(shí)是一個大問題的兩個方面,這個大問題揭示了直線與二元一次方程的對應(yīng)關(guān)系,同時,直線方程的一般形式是對直線特殊形式的抽象和概括,而且抽象的層次越高越簡潔,我們還體會到了特殊與一般的轉(zhuǎn)化關(guān)系.
。ㄈ┚毩(xí)鞏固、總結(jié)提高、板書和作業(yè)等環(huán)節(jié)的設(shè)計
略
高中數(shù)學(xué)教案14
整體設(shè)計
教學(xué)分析
我們在初中的學(xué)習(xí)過程中,已了解了整數(shù)指數(shù)冪的概念和運(yùn)算性質(zhì)。從本節(jié)開始我們將在回顧平方根和立方根的基礎(chǔ)上,類比出正數(shù)的n次方根的定義,從而把指數(shù)推廣到分?jǐn)?shù)指數(shù)。進(jìn)而推廣到有理數(shù)指數(shù),再推廣到實(shí)數(shù)指數(shù),并將冪的運(yùn)算性質(zhì)由整數(shù)指數(shù)冪推廣到實(shí)數(shù)指數(shù)冪。
教材為了讓學(xué)生在學(xué)習(xí)之外就感受到指數(shù)函數(shù)的實(shí)際背景,先給出兩個具體例子:GDP的增長問題和碳14的衰減問題。前一個問題,既讓學(xué)生回顧了初中學(xué)過的整數(shù)指數(shù)冪,也讓學(xué)生感受到其中的函數(shù)模型,并且還有思想教育價值。后一個問題讓學(xué)生體會其中的函數(shù)模型的同時,激發(fā)學(xué)生探究分?jǐn)?shù)指數(shù)冪、無理數(shù)指數(shù)冪的興趣與欲望,為新知識的學(xué)習(xí)作了鋪墊。
本節(jié)安排的內(nèi)容蘊(yùn)涵了許多重要的數(shù)學(xué)思想方法,如推廣的思想(指數(shù)冪運(yùn)算律的推廣)、類比的思想、逼近的思想(有理數(shù)指數(shù)冪逼近無理數(shù)指數(shù)冪)、數(shù)形結(jié)合的思想(用指數(shù)函數(shù)的圖象研究指數(shù)函數(shù)的性質(zhì))等,同時,充分關(guān)注與實(shí)際問題的結(jié)合,體現(xiàn)數(shù)學(xué)的應(yīng)用價值。
根據(jù)本節(jié)內(nèi)容的特點(diǎn),教學(xué)中要注意發(fā)揮信息技術(shù)的力量,盡量利用計算器和計算機(jī)創(chuàng)設(shè)教學(xué)情境,為學(xué)生的數(shù)學(xué)探究與數(shù)學(xué)思維提供支持。
三維目標(biāo)
1、通過與初中所學(xué)的知識進(jìn)行類比,理解分?jǐn)?shù)指數(shù)冪的概念,進(jìn)而學(xué)習(xí)指數(shù)冪的性質(zhì)。掌握分?jǐn)?shù)指數(shù)冪和根式之間的互化,掌握分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。培養(yǎng)學(xué)生觀察分析、抽象類比的能力。
2、掌握根式與分?jǐn)?shù)指數(shù)冪的互化,滲透“轉(zhuǎn)化”的數(shù)學(xué)思想。通過運(yùn)算訓(xùn)練,養(yǎng)成學(xué)生嚴(yán)謹(jǐn)治學(xué),一絲不茍的學(xué)習(xí)習(xí)慣,讓學(xué)生了解數(shù)學(xué)來自生活,數(shù)學(xué)又服務(wù)于生活的哲理。
3、能熟練地運(yùn)用有理指數(shù)冪運(yùn)算性質(zhì)進(jìn)行化簡、求值,培養(yǎng)學(xué)生嚴(yán)謹(jǐn)?shù)乃季S和科學(xué)正確的計算能力。
4、通過訓(xùn)練及點(diǎn)評,讓學(xué)生更能熟練掌握指數(shù)冪的運(yùn)算性質(zhì)。展示函數(shù)圖象,讓學(xué)生通過觀察,進(jìn)而研究指數(shù)函數(shù)的性質(zhì),讓學(xué)生體驗(yàn)數(shù)學(xué)的簡潔美和統(tǒng)一美。
重點(diǎn)難點(diǎn)
教學(xué)重點(diǎn)
。1)分?jǐn)?shù)指數(shù)冪和根式概念的理解。
。2)掌握并運(yùn)用分?jǐn)?shù)指數(shù)冪的運(yùn)算性質(zhì)。
(3)運(yùn)用有理指數(shù)冪的性質(zhì)進(jìn)行化簡、求值。
教學(xué)難點(diǎn)
。1)分?jǐn)?shù)指數(shù)冪及根式概念的理解。
(2)有理指數(shù)冪性質(zhì)的靈活應(yīng)用。
課時安排
3課時
教學(xué)過程
第1課時
作者:路致芳
導(dǎo)入新課
思路1.同學(xué)們在預(yù)習(xí)的過程中能否知道考古學(xué)家如何判斷生物的發(fā)展與進(jìn)化,又怎樣判斷它們所處的年代?(考古學(xué)家是通過對生物化石的研究來判斷生物的發(fā)展與進(jìn)化的,第二個問題我們不太清楚)考古學(xué)家是按照這樣一條規(guī)律推測生物所處的年代的。教師板書本節(jié)課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
思路2.同學(xué)們,我們在初中學(xué)習(xí)了平方根、立方根,那么有沒有四次方根、五次方根…n次方根呢?答案是肯定的,這就是我們本堂課研究的課題:指數(shù)函數(shù)——指數(shù)與指數(shù)冪的運(yùn)算。
推進(jìn)新課
新知探究
提出問題
(1)什么是平方根?什么是立方根?一個數(shù)的平方根有幾個,立方根呢?
(2)如x4=a,x5=a,x6=a,根據(jù)上面的結(jié)論我們又能得到什么呢?
。3)根據(jù)上面的結(jié)論我們能得到一般性的結(jié)論嗎?
(4)可否用一個式子表達(dá)呢?
活動:教師提示,引導(dǎo)學(xué)生回憶初中的時候已經(jīng)學(xué)過的平方根、立方根是如何定義的,對照類比平方根、立方根的定義解釋上面的式子,對問題(2)的結(jié)論進(jìn)行引申、推廣,相互交流討論后回答,教師及時啟發(fā)學(xué)生,具體問題一般化,歸納類比出n次方根的概念,評價學(xué)生的思維。
討論結(jié)果:(1)若x2=a,則x叫做a的平方根,正實(shí)數(shù)的平方根有兩個,它們互為相反數(shù),如:4的平方根為±2,負(fù)數(shù)沒有平方根,同理,若x3=a,則x叫做a的立方根,一個數(shù)的立方根只有一個,如:-8的立方根為-2.
。2)類比平方根、立方根的定義,一個數(shù)的四次方等于a,則這個數(shù)叫a的四次方根。一個數(shù)的五次方等于a,則這個數(shù)叫a的五次方根。一個數(shù)的六次方等于a,則這個數(shù)叫a的六次方根。
。3)類比(2)得到一個數(shù)的n次方等于a,則這個數(shù)叫a的n次方根。
(4)用一個式子表達(dá)是,若xn=a,則x叫a的n次方根。
教師板書n次方根的意義:
一般地,如果xn=a,那么x叫做a的n次方根(n th root),其中n>1且n∈正整數(shù)集。
可以看出數(shù)的平方根、立方根的概念是n次方根的概念的特例。
提出問題
。1)你能根據(jù)n次方根的意義求出下列數(shù)的n次方根嗎?(多媒體顯示以下題目)。
、4的平方根;②±8的立方根;③16的`4次方根;④32的5次方根;⑤-32的5次方根;⑥0的7次方根;⑦a6的立方根。
。2)平方根,立方根,4次方根,5次方根,7次方根,分別對應(yīng)的方根的指數(shù)是什么數(shù),有什么特點(diǎn)?4,±8,16,-32,32,0,a6分別對應(yīng)什么性質(zhì)的數(shù),有什么特點(diǎn)?
(3)問題(2)中,既然方根有奇次的也有偶次的,數(shù)a有正有負(fù),還有零,結(jié)論有一個的,也有兩個的,你能否總結(jié)一般規(guī)律呢?
。4)任何一個數(shù)a的偶次方根是否存在呢?
活動:教師提示學(xué)生切實(shí)緊扣n次方根的概念,求一個數(shù)a的n次方根,就是求出的那個數(shù)的n次方等于a,及時點(diǎn)撥學(xué)生,從數(shù)的分類考慮,可以把具體的數(shù)寫出來,觀察數(shù)的特點(diǎn),對問題(2)中的結(jié)論,類比推廣引申,考慮要全面,對回答正確的學(xué)生及時表揚(yáng),對回答不準(zhǔn)確的學(xué)生提示引導(dǎo)考慮問題的思路。
討論結(jié)果:(1)因?yàn)椤?的平方等于4,±2的立方等于±8,±2的4次方等于16,2的5次方等于32,-2的5次方等于-32,0的7次方等于0,a2的立方等于a6,所以4的平方根,±8的立方根,16的4次方根,32的5次方根,-32的5次方根,0的7次方根,a6的立方根分別是±2,±2,±2,2,-2,0,a2.
。2)方根的指數(shù)是2,3,4,5,7…特點(diǎn)是有奇數(shù)和偶數(shù)。總的來看,這些數(shù)包括正數(shù),負(fù)數(shù)和零。
。3)一個數(shù)a的奇次方根只有一個,一個正數(shù)a的偶次方根有兩個,是互為相反數(shù)。0的任何次方根都是0.
。4)任何一個數(shù)a的偶次方根不一定存在,如負(fù)數(shù)的偶次方根就不存在,因?yàn)闆]有一個數(shù)的偶次方是一個負(fù)數(shù)。
類比前面的平方根、立方根,結(jié)合剛才的討論,歸納出一般情形,得到n次方根的性質(zhì):
、佼(dāng)n為偶數(shù)時,正數(shù)a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。
②n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示。
③負(fù)數(shù)沒有偶次方根;0的任何次方根都是零。
上面的文字語言可用下面的式子表示:
a為正數(shù):n為奇數(shù),a的n次方根有一個為na,n為偶數(shù),a的n次方根有兩個為±na.
a為負(fù)數(shù):n為奇數(shù),a的n次方根只有一個為na,n為偶數(shù),a的n次方根不存在。
零的n次方根為零,記為n0=0.
可以看出數(shù)的平方根、立方根的性質(zhì)是n次方根的性質(zhì)的特例。
思考
根據(jù)n次方根的性質(zhì)能否舉例說明上述幾種情況?
活動:教師提示學(xué)生對方根的性質(zhì)要分類掌握,即正數(shù)的奇偶次方根,負(fù)數(shù)的奇次方根,零的任何次方根,這樣才不重不漏,同時巡視學(xué)生,隨機(jī)給出一個數(shù),我們寫出它的平方根,立方根,四次方根等,看是否有意義,注意觀察方根的形式,及時糾正學(xué)生在舉例過程中的問題。
解:答案不,比如,64的立方根是4,16的四次方根為±2,-27的5次方根為5-27,而-27的4次方根不存在等。其中5-27也表示方根,它類似于na的形式,現(xiàn)在我們給式子na一個名稱——根式。
根式的概念:
式子na叫做根式,其中a叫做被開方數(shù),n叫做根指數(shù)。
如3-27中,3叫根指數(shù),-27叫被開方數(shù)。
思考
nan表示an的n次方根,式子nan=a一定成立嗎?如果不一定成立,那么nan等于什么?
活動:教師讓學(xué)生注意討論n為奇偶數(shù)和a的符號,充分讓學(xué)生多舉實(shí)例,分組討論。教師點(diǎn)撥,注意歸納整理。
〔如3(-3)3=3-27=-3,4(-8)4=|-8|=8〕。
解答:根據(jù)n次方根的意義,可得:(na)n=a.
通過探究得到:n為奇數(shù),nan=a.
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.
因此我們得到n次方根的運(yùn)算性質(zhì):
①(na)n=a.先開方,再乘方(同次),結(jié)果為被開方數(shù)。
、趎為奇數(shù),nan=a.先奇次乘方,再開方(同次),結(jié)果為被開方數(shù)。
n為偶數(shù),nan=|a|=a,-a,a≥0,a<0.先偶次乘方,再開方(同次),結(jié)果為被開方數(shù)的絕對值。
應(yīng)用示例
思路1
例求下列各式的值:
。1)3(-8)3;(2)(-10)2;(3)4(3-π)4;(4)(a-b)2(a>b)。
活動:求某些式子的值,首先考慮的應(yīng)是什么,明確題目的要求是什么,都用到哪些知識,關(guān)鍵是啥,搞清這些之后,再針對每一個題目仔細(xì)分析。觀察學(xué)生的解題情況,讓學(xué)生展示結(jié)果,抓住學(xué)生在解題過程中出現(xiàn)的問題并對癥下藥。求下列各式的值實(shí)際上是求數(shù)的方根,可按方根的運(yùn)算性質(zhì)來解,首先要搞清楚運(yùn)算順序,目的是把被開方數(shù)的符號定準(zhǔn),然后看根指數(shù)是奇數(shù)還是偶數(shù),如果是奇數(shù),無需考慮符號,如果是偶數(shù),開方的結(jié)果必須是非負(fù)數(shù)。
解:(1)3(-8)3=-8;
。2)(-10)2=10;
。3)4(3-π)4=π-3;
。4)(a-b)2=a-b(a>b)。
點(diǎn)評:不注意n的奇偶性對式子nan的值的影響,是導(dǎo)致問題出現(xiàn)的一個重要原因,要在理解的基礎(chǔ)上,記準(zhǔn),記熟,會用,活用。
變式訓(xùn)練
求出下列各式的值:
(1)7(-2)7;
(2)3(3a-3)3(a≤1);
(3)4(3a-3)4.
解:(1)7(-2)7=-2,
(2)3(3a-3)3(a≤1)=3a-3,
(3)4(3a-3)4=
點(diǎn)評:本題易錯的是第(3)題,往往忽視a與1大小的討論,造成錯解。
思路2
例1下列各式中正確的是()
A.4a4=a
B.6(-2)2=3-2
C.a0=1
D.10(2-1)5=2-1
活動:教師提示,這是一道選擇題,本題考查n次方根的運(yùn)算性質(zhì),應(yīng)首先考慮根據(jù)方根的意義和運(yùn)算性質(zhì)來解,既要考慮被開方數(shù),又要考慮根指數(shù),嚴(yán)格按求方根的步驟,體會方根運(yùn)算的實(shí)質(zhì),學(xué)生先思考哪些地方容易出錯,再回答。
解析:(1)4a4=a,考查n次方根的運(yùn)算性質(zhì),當(dāng)n為偶數(shù)時,應(yīng)先寫nan=|a|,故A項錯。
(2)6(-2)2=3-2,本質(zhì)上與上題相同,是一個正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,結(jié)論為6(-2)2=32,故B項錯。
(3)a0=1是有條件的,即a≠0,故C項也錯。
(4)D項是一個正數(shù)的偶次方根,根據(jù)運(yùn)算順序也應(yīng)如此,故D項正確。所以答案選D.
答案:D
點(diǎn)評:本題由于考查n次方根的運(yùn)算性質(zhì)與運(yùn)算順序,有時極易選錯,選四個答案的情況都會有,因此解題時千萬要細(xì)心。
例2 3+22+3-22=__________.
活動:讓同學(xué)們積極思考,交流討論,本題乍一看內(nèi)容與本節(jié)無關(guān),但仔細(xì)一想,我們學(xué)習(xí)的內(nèi)容是方根,這里是帶有雙重根號的式子,去掉一層根號,根據(jù)方根的運(yùn)算求出結(jié)果是解題的關(guān)鍵,因此將根號下面的式子化成一個完全平方式就更為關(guān)鍵了,從何處入手?需利用和的平方公式與差的平方公式化為完全平方式。正確分析題意是關(guān)鍵,教師提示,引導(dǎo)學(xué)生解題的思路。
解析:因?yàn)?+22=1+22+(2)2=(1+2)2=2+1,
3-22=(2)2-22+1=(2-1)2=2-1,
所以3+22+3-22=22.
答案:22
點(diǎn)評:不難看出3-22與3+22形式上有些特點(diǎn),即是對稱根式,是A±2B形式的式子,我們總能找到辦法把其化成一個完全平方式。
思考
上面的例2還有別的解法嗎?
活動:教師引導(dǎo),去根號常常利用完全平方公式,有時平方差公式也可,同學(xué)們觀察兩個式子的特點(diǎn),具有對稱性,再考慮并交流討論,一個是“+”,一個是“-”,去掉一層根號后,相加正好抵消。同時借助平方差,又可去掉根號,因此把兩個式子的和看成一個整體,兩邊平方即可,探討得另一種解法。
另解:利用整體思想,x=3+22+3-22,
兩邊平方,得x2=3+22+3-22+2(3+22)(3-22)=6+232-(22)2=6+2=8,所以x=22.
點(diǎn)評:對雙重二次根式,特別是A±2B形式的式子,我們總能找到辦法將根號下面的式子化成一個完全平方式,問題迎刃而解,另外對A+2B±A-2B的式子,我們可以把它們看成一個整體利用完全平方公式和平方差公式去解。
變式訓(xùn)練
若a2-2a+1=a-1,求a的取值范圍。
解:因?yàn)閍2-2a+1=a-1,而a2-2a+1=(a-1)2=|a-1|=a-1,
即a-1≥0,
所以a≥1.
點(diǎn)評:利用方根的運(yùn)算性質(zhì)轉(zhuǎn)化為去絕對值符號,是解題的關(guān)鍵。
知能訓(xùn)練
。ń處熡枚嗝襟w顯示在屏幕上)
1、以下說法正確的是()
A.正數(shù)的n次方根是一個正數(shù)
B.負(fù)數(shù)的n次方根是一個負(fù)數(shù)
C.0的n次方根是零
D.a的n次方根用na表示(以上n>1且n∈正整數(shù)集)
答案:C
2、化簡下列各式:
(1)664;(2)4(-3)2;(3)4x8;(4)6x6y3;(5)(x-y)2.
答案:(1)2;(2)3;(3)x2;(4)|x|y;(5)|x-y|。
3、計算7+40+7-40=__________.
解析:7+40+7-40
=(5)2+25?2+(2)2+(5)2-25?2+(2)2
=(5+2)2+(5-2)2
=5+2+5-2
=25.
答案:25
拓展提升
問題:nan=a與(na)n=a(n>1,n∈N)哪一個是恒等式,為什么?請舉例說明。
活動:組織學(xué)生結(jié)合前面的例題及其解答,進(jìn)行分析討論,解決這一問題要緊扣n次方根的定義。
通過歸納,得出問題結(jié)果,對a是正數(shù)和零,n為偶數(shù)時,n為奇數(shù)時討論一下。再對a是負(fù)數(shù),n為偶數(shù)時,n為奇數(shù)時討論一下,就可得到相應(yīng)的結(jié)論。
解:(1)(na)n=a(n>1,n∈N)。
如果xn=a(n>1,且n∈N)有意義,則無論n是奇數(shù)或偶數(shù),x=na一定是它的一個n次方根,所以(na)n=a恒成立。
例如:(43)4=3,(3-5)3=-5.
(2)nan=a,|a|,當(dāng)n為奇數(shù),當(dāng)n為偶數(shù)。
當(dāng)n為奇數(shù)時,a∈R,nan=a恒成立。
例如:525=2,5(-2)5=-2.
當(dāng)n為偶數(shù)時,a∈R,an≥0,nan表示正的n次方根或0,所以如果a≥0,那么nan=a.例如434=3,40=0;如果a<0,那么nan=|a|=-a,如(-3)2=32=3,
即(na)n=a(n>1,n∈N)是恒等式,nan=a(n>1,n∈N)是有條件的。
點(diǎn)評:實(shí)質(zhì)上是對n次方根的概念、性質(zhì)以及運(yùn)算性質(zhì)的深刻理解。
課堂小結(jié)
學(xué)生仔細(xì)交流討論后,在筆記上寫出本節(jié)課的學(xué)習(xí)收獲,教師用多媒體顯示在屏幕上。
1、如果xn=a,那么x叫a的n次方根,其中n>1且n∈正整數(shù)集。用式子na表示,式子na叫根式,其中a叫被開方數(shù),n叫根指數(shù)。
。1)當(dāng)n為偶數(shù)時,a的n次方根有兩個,是互為相反數(shù),正的n次方根用na表示,如果是負(fù)數(shù),負(fù)的n次方根用-na表示,正的n次方根與負(fù)的n次方根合并寫成±na(a>0)。
(2)n為奇數(shù)時,正數(shù)的n次方根是一個正數(shù),負(fù)數(shù)的n次方根是一個負(fù)數(shù),這時a的n次方根用符號na表示。
(3)負(fù)數(shù)沒有偶次方根。0的任何次方根都是零。
2、掌握兩個公式:n為奇數(shù)時,(na)n=a,n為偶數(shù)時,nan=|a|=a,-a,a≥0,a<0.
作業(yè)
課本習(xí)題2.1A組1.
補(bǔ)充作業(yè):
1、化簡下列各式:
(1)681;(2)15-32;(3)6a2b4.
解:(1)681=634=332=39;
(2)15-32=-1525=-32;
(3)6a2b4=6(|a|?b2)2=3|a|?b2.
答案:2a-13
3.5+26+5-26=__________.
解析:對雙重二次根式,我們覺得難以下筆,我們考慮只有在開方的前提下才可能解出,由此提示我們想辦法去掉一層根式,
不難看出5+26=(3+2)2=3+2.
同理5-26=(3-2)2=3-2.
所以5+26+5-26=23.
答案:23
設(shè)計感想
學(xué)生已經(jīng)學(xué)習(xí)了數(shù)的平方根和立方根,根式的內(nèi)容是這些內(nèi)容的推廣,本節(jié)課由于方根和根式的概念和性質(zhì)難以理解,在引入根式的概念時,要結(jié)合已學(xué)內(nèi)容,列舉具體實(shí)例,根式na的講解要分n是奇數(shù)和偶數(shù)兩種情況來進(jìn)行,每種情況又分a>0,a<0,a=0三種情況,并結(jié)合具體例子講解,因此設(shè)計了大量的類比和練習(xí)題目,要靈活處理這些題目,幫助學(xué)生加以理解,所以需要用多媒體信息技術(shù)服務(wù)教學(xué)。
第2課時
作者:郝云靜
導(dǎo)入新課
思路1.碳14測年法。原來宇宙射線在大氣層中能夠產(chǎn)生放射性碳14,并與氧結(jié)合成二氧化碳后進(jìn)入所有活組織,先為植物吸收,再為動物吸收,只要植物和動物生存著,它們就會不斷地吸收碳14在機(jī)體內(nèi)保持一定的水平。而當(dāng)有機(jī)體死亡后,即會停止吸收碳14,其組織內(nèi)的碳14便以約5 730年的半衰期開始衰變并消失。對于任何含碳物質(zhì)只要測定剩下的放射性碳14的含量,便可推斷其年代(半衰期:經(jīng)過一定的時間,變?yōu)樵瓉淼囊话耄R霰竟?jié)課題:指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。
思路2.同學(xué)們,我們在初中學(xué)習(xí)了整數(shù)指數(shù)冪及其運(yùn)算性質(zhì),那么整數(shù)指數(shù)冪是否可以推廣呢?答案是肯定的。這就是本節(jié)的主講內(nèi)容,教師板書本節(jié)課題——指數(shù)與指數(shù)冪的運(yùn)算之分?jǐn)?shù)指數(shù)冪。
推進(jìn)新課
新知探究
提出問題
。1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是什么?
(2)觀察以下式子,并總結(jié)出規(guī)律:a>0,
、;
、赼8=(a4)2=a4=,;
③4a12=4(a3)4=a3=;
、2a10=2(a5)2=a5= 。
。3)利用(2)的規(guī)律,你能表示下列式子嗎?
,,,(x>0,m,n∈正整數(shù)集,且n>1)。
。4)你能用方根的意義來解釋(3)的式子嗎?
。5)你能推廣到一般的情形嗎?
活動:學(xué)生回顧初中學(xué)習(xí)的整數(shù)指數(shù)冪及運(yùn)算性質(zhì),仔細(xì)觀察,特別是每題的開始和最后兩步的指數(shù)之間的關(guān)系,教師引導(dǎo)學(xué)生體會方根的意義,用方根的意義加以解釋,指點(diǎn)啟發(fā)學(xué)生類比(2)的規(guī)律表示,借鑒(2)(3),我們把具體推廣到一般,對寫正確的同學(xué)及時表揚(yáng),其他學(xué)生鼓勵提示。
討論結(jié)果:(1)整數(shù)指數(shù)冪的運(yùn)算性質(zhì):an=a?a?a?…?a,a0=1(a≠0);00無意義;
a-n=1an(a≠0);am?an=am+n;(am)n=amn;(an)m=amn;(ab)n=anbn.
。2)①a2是a10的5次方根;②a4是a8的2次方根;③a3是a12的4次方根;④a5是a10的2次方根。實(shí)質(zhì)上①5a10=,②a8=,③4a12=,④2a10=結(jié)果的a的指數(shù)是2,4,3,5分別寫成了105,82,124,105,形式上變了,本質(zhì)沒變。
根據(jù)4個式子的最后結(jié)果可以總結(jié):當(dāng)根式的被開方數(shù)的指數(shù)能被根指數(shù)整除時,根式可以寫成分?jǐn)?shù)作為指數(shù)的形式(分?jǐn)?shù)指數(shù)冪形式)。
。3)利用(2)的規(guī)律,453=,375=,5a7=,nxm= 。
(4)53的四次方根是,75的三次方根是,a7的五次方根是,xm的n次方根是。
結(jié)果表明方根的結(jié)果和分?jǐn)?shù)指數(shù)冪是相通的。
。5)如果a>0,那么am的n次方根可表示為nam=,即=nam(a>0,m,n∈正整數(shù)集,n>1)。
綜上所述,我們得到正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義,教師板書:
規(guī)定:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1)。
提出問題
(1)負(fù)整數(shù)指數(shù)冪的意義是怎樣規(guī)定的?
。2)你能得出負(fù)分?jǐn)?shù)指數(shù)冪的意義嗎?
。3)你認(rèn)為應(yīng)怎樣規(guī)定零的分?jǐn)?shù)指數(shù)冪的意義?
。4)綜合上述,如何規(guī)定分?jǐn)?shù)指數(shù)冪的意義?
(5)分?jǐn)?shù)指數(shù)冪的意義中,為什么規(guī)定a>0,去掉這個規(guī)定會產(chǎn)生什么樣的后果?
。6)既然指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù),那么整數(shù)指數(shù)冪的運(yùn)算性質(zhì)是否也適用于有理數(shù)指數(shù)冪呢?
活動:學(xué)生回想初中學(xué)習(xí)的情形,結(jié)合自己的學(xué)習(xí)體會回答,根據(jù)零的整數(shù)指數(shù)冪的意義和負(fù)整數(shù)指數(shù)冪的意義來類比,把正分?jǐn)?shù)指數(shù)冪的意義與負(fù)分?jǐn)?shù)指數(shù)冪的意義融合起來,與整數(shù)指數(shù)冪的運(yùn)算性質(zhì)類比可得有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),教師在黑板上板書,學(xué)生合作交流,以具體的實(shí)例說明a>0的必要性,教師及時作出評價。
討論結(jié)果:(1)負(fù)整數(shù)指數(shù)冪的意義是:a-n=1an(a≠0),n∈N+。
。2)既然負(fù)整數(shù)指數(shù)冪的意義是這樣規(guī)定的,類比正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義可得正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義。
規(guī)定:正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈=N+,n>1)。
。3)規(guī)定:零的分?jǐn)?shù)指數(shù)冪的意義是:零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
(4)教師板書分?jǐn)?shù)指數(shù)冪的意義。分?jǐn)?shù)指數(shù)冪的意義就是:
正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。
(5)若沒有a>0這個條件會怎樣呢?
如=3-1=-1,=6(-1)2=1具有同樣意義的兩個式子出現(xiàn)了截然不同的結(jié)果,這只說明分?jǐn)?shù)指數(shù)冪在底數(shù)小于零時是無意義的。因此在把根式化成分?jǐn)?shù)指數(shù)時,切記要使底數(shù)大于零,如無a>0的條件,比如式子3a2=,同時負(fù)數(shù)開奇次方是有意義的,負(fù)數(shù)開奇次方時,應(yīng)把負(fù)號移到根式的外邊,然后再按規(guī)定化成分?jǐn)?shù)指數(shù)冪,也就是說,負(fù)分?jǐn)?shù)指數(shù)冪在有意義的情況下總表示正數(shù),而不是負(fù)數(shù),負(fù)數(shù)只是出現(xiàn)在指數(shù)上。
。6)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。
有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì):
、賏r?as=ar+s(a>0,r,s∈Q),
②(ar)s=ars(a>0,r,s∈Q),
、(a?b)r=arbr(a>0,b>0,r∈Q)。
我們利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以解決一些問題,來看下面的例題。
應(yīng)用示例
例1求值:(1);(2);(3)12-5;(4) 。
活動:教師引導(dǎo)學(xué)生考慮解題的方法,利用冪的運(yùn)算性質(zhì)計算出數(shù)值或化成最簡根式,根據(jù)題目要求,把底數(shù)寫成冪的形式,8寫成23,25寫成52,12寫成2-1,1681寫成234,利用有理數(shù)冪的運(yùn)算性質(zhì)可以解答,完成后,把自己的答案用投影儀展示出來。
解:(1) =22=4;
。2)=5-1=15;
(3)12-5=(2-1)-5=2-1×(-5)=32;
。4)=23-3=278.
點(diǎn)評:本例主要考查冪值運(yùn)算,要按規(guī)定來解。在進(jìn)行冪值運(yùn)算時,要首先考慮轉(zhuǎn)化為指數(shù)運(yùn)算,而不是首先轉(zhuǎn)化為熟悉的根式運(yùn)算,如=382=364=4.
例2用分?jǐn)?shù)指數(shù)冪的形式表示下列各式。
a3?a;a2?3a2;a3a(a>0)。
活動:學(xué)生觀察、思考,根據(jù)解題的順序,把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算,根式化為分?jǐn)?shù)指數(shù)冪時,要由里往外依次進(jìn)行,把握好運(yùn)算性質(zhì)和順序,學(xué)生討論交流自己的解題步驟,教師評價學(xué)生的解題情況,鼓勵學(xué)生注意總結(jié)。
解:a3?a=a3? =;
a2?3a2=a2? =;
a3a= 。
點(diǎn)評:利用分?jǐn)?shù)指數(shù)冪的意義和有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)進(jìn)行根式運(yùn)算時,其順序是先把根式化為分?jǐn)?shù)指數(shù)冪,再由冪的運(yùn)算性質(zhì)來運(yùn)算。對于計算的結(jié)果,不強(qiáng)求統(tǒng)一用什么形式來表示,沒有特別要求,就用分?jǐn)?shù)指數(shù)冪的形式來表示,但結(jié)果不能既有分?jǐn)?shù)指數(shù)又有根式,也不能既有分母又有負(fù)指數(shù)。
例3計算下列各式(式中字母都是正數(shù))。
。1);
。2)。
活動:先由學(xué)生觀察以上兩個式子的特征,然后分析,四則運(yùn)算的順序是先算乘方,再算乘除,最后算加減,有括號的先算括號內(nèi)的,整數(shù)冪的運(yùn)算性質(zhì)及運(yùn)算規(guī)律擴(kuò)充到分?jǐn)?shù)指數(shù)冪后,其運(yùn)算順序仍符合我們以前的四則運(yùn)算順序,再解答,把自己的答案用投影儀展示出來,相互交流,其中要注意到(1)小題是單項式的乘除運(yùn)算,可以用單項式的乘除法運(yùn)算順序進(jìn)行,要注意符號,第(2)小題是乘方運(yùn)算,可先按積的乘方計算,再按冪的乘方進(jìn)行計算,熟悉后可以簡化步驟。
解:(1)原式=[2×(-6)÷(-3)] =4ab0=4a;
。2)=m2n-3=m2n3.
點(diǎn)評:分?jǐn)?shù)指數(shù)冪不表示相同因式的積,而是根式的另一種寫法。有了分?jǐn)?shù)指數(shù)冪,就可把根式轉(zhuǎn)化成分?jǐn)?shù)指數(shù)冪的形式,用分?jǐn)?shù)指數(shù)冪的運(yùn)算法則進(jìn)行運(yùn)算了。
本例主要是指數(shù)冪的運(yùn)算法則的綜合考查和應(yīng)用。
變式訓(xùn)練
求值:(1)33?33?63;
(2)627m3125n64.
解:(1)33?33?63= =32=9;
(2)627m3125n64= =9m225n4=925m2n-4.
例4計算下列各式:
。1)(325-125)÷425;
(2)a2a?3a2(a>0)。
活動:先由學(xué)生觀察以上兩個式子的特征,然后分析,化為同底。利用分?jǐn)?shù)指數(shù)冪計算,在第(1)小題中,只含有根式,且不是同次根式,比較難計算,但把根式先化為分?jǐn)?shù)指數(shù)冪再計算,這樣就簡便多了,第(2)小題也是先把根式轉(zhuǎn)化為分?jǐn)?shù)指數(shù)冪后再由運(yùn)算法則計算,最后寫出解答。
解:(1)原式=
= =65-5;
(2)a2a?3a2= =6a5.
知能訓(xùn)練
課本本節(jié)練習(xí)1,2,3
【補(bǔ)充練習(xí)】
教師用實(shí)物投影儀把題目投射到屏幕上讓學(xué)生解答,教師巡視,啟發(fā),對做得好的同學(xué)給予表揚(yáng)鼓勵。
1、(1)下列運(yùn)算中,正確的是()
A.a2?a3=a6 B.(-a2)3=(-a3)2
C.(a-1)0=0 D.(-a2)3=-a6
。2)下列各式①4(-4)2n,②4(-4)2n+1,③5a4,④4a5(各式的n∈N,a∈R)中,有意義的是()
A.①② B.①③ C.①②③④ D.①③④
(3)(34a6)2?(43a6)2等于()
A.a B.a2 C.a3 D.a4
。4)把根式-25(a-b)-2改寫成分?jǐn)?shù)指數(shù)冪的形式為()
A. B.
C. D.
(5)化簡的結(jié)果是()
A.6a B.-a C.-9a D.9a
2、計算:(1) --17-2+ -3-1+(2-1)0=__________.
。2)設(shè)5x=4,5y=2,則52x-y=__________.
3、已知x+y=12,xy=9且x 答案:1.(1)D (2)B (3)B (4)A (5)C 2.(1)19 (2)8 3、解:。 因?yàn)閤+y=12,xy=9,所以(x-y)2=(x+y)2-4xy=144-36=108=4×27. 又因?yàn)閤 所以原式= =12-6-63=-33. 拓展提升 1、化簡:。 活動:學(xué)生觀察式子特點(diǎn),考慮x的指數(shù)之間的關(guān)系可以得到解題思路,應(yīng)對原式進(jìn)行因式分解,根據(jù)本題的特點(diǎn),注意到: x-1= -13=; x+1= +13=; 。 構(gòu)建解題思路教師適時啟發(fā)提示。 解: = = = = 。 點(diǎn)撥:解這類題目,要注意運(yùn)用以下公式, =a-b, =a± +b, =a±b. 2、已知,探究下列各式的值的求法。 (1)a+a-1;(2)a2+a-2;(3) 。 解:(1)將,兩邊平方,得a+a-1+2=9,即a+a-1=7; 。2)將a+a-1=7兩邊平方,得a2+a-2+2=49,即a2+ a-2=47; (3)由于, 所以有=a+a-1+1=8. 點(diǎn)撥:對“條件求值”問題,一定要弄清已知與未知的聯(lián)系,然后采取“整體代換”或“求值后代換”兩種方法求值。 課堂小結(jié) 活動:教師,本節(jié)課同學(xué)們有哪些收獲?請把你的學(xué)習(xí)收獲記錄在你的筆記本上,同學(xué)們之間相互交流。同時教師用投影儀顯示本堂課的知識要點(diǎn): 。1)分?jǐn)?shù)指數(shù)冪的意義就是:正數(shù)的正分?jǐn)?shù)指數(shù)冪的意義是=nam(a>0,m,n∈正整數(shù)集,n>1),正數(shù)的負(fù)分?jǐn)?shù)指數(shù)冪的意義是= =1nam(a>0,m,n∈正整數(shù)集,n>1),零的正分?jǐn)?shù)次冪等于零,零的負(fù)分?jǐn)?shù)指數(shù)冪沒有意義。 。2)規(guī)定了分?jǐn)?shù)指數(shù)冪的意義后,指數(shù)的概念就從整數(shù)指數(shù)推廣到了有理數(shù)指數(shù)。 。3)有理數(shù)指數(shù)冪的運(yùn)算性質(zhì):對任意的有理數(shù)r,s,均有下面的運(yùn)算性質(zhì): 、賏r?as=ar+s(a>0,r,s∈Q), 、(ar)s=ars(a>0,r,s∈Q), 、(a?b)r=arbr(a>0,b>0,r∈Q)。 。4)說明兩點(diǎn): 、俜?jǐn)?shù)指數(shù)冪的意義是一種規(guī)定,我們前面所舉的例子只表明這種規(guī)定的合理性,其中沒有推出關(guān)系。 、谡麛(shù)指數(shù)冪的運(yùn)算性質(zhì)對任意的有理數(shù)指數(shù)冪也同樣適用。因而分?jǐn)?shù)指數(shù)冪與根式可以互化,也可以利用=am來計算。 作業(yè) 課本習(xí)題2.1A組2,4. 設(shè)計感想 本節(jié)課是分?jǐn)?shù)指數(shù)冪的意義的引出及應(yīng)用,分?jǐn)?shù)指數(shù)是指數(shù)概念的又一次擴(kuò)充,要讓學(xué)生反復(fù)理解分?jǐn)?shù)指數(shù)冪的意義,教學(xué)中可以通過根式與分?jǐn)?shù)指數(shù)冪的互化來鞏固加深對這一概念的理解,用觀察、歸納和類比的方法完成,由于是硬性的規(guī)定,沒有合理的解釋,因此多安排一些練習(xí),強(qiáng)化訓(xùn)練,鞏固知識,要輔助以信息技術(shù)的手段來完成大容量的課堂教學(xué)任務(wù)。 第3課時 作者:鄭芳鳴 導(dǎo)入新課 思路1.同學(xué)們,既然我們把指數(shù)從正整數(shù)推廣到整數(shù),又從整數(shù)推廣到正分?jǐn)?shù)到負(fù)分?jǐn)?shù),這樣指數(shù)就推廣到有理數(shù),那么它是否也和數(shù)的推廣一樣,到底有沒有無理數(shù)指數(shù)冪呢?回顧數(shù)的擴(kuò)充過程,自然數(shù)到整數(shù),整數(shù)到分?jǐn)?shù)(有理數(shù)),有理數(shù)到實(shí)數(shù)。并且知道,在有理數(shù)到實(shí)數(shù)的擴(kuò)充過程中,增添的數(shù)是無理數(shù)。對無理數(shù)指數(shù)冪,也是這樣擴(kuò)充而來。既然如此,我們這節(jié)課的主要內(nèi)容是:教師板書本堂課的課題〔指數(shù)與指數(shù)冪的運(yùn)算(3)〕之無理數(shù)指數(shù)冪。 思路2.同學(xué)們,在初中我們學(xué)習(xí)了函數(shù)的知識,對函數(shù)有了一個初步的了解,到了高中,我們又對函數(shù)的概念進(jìn)行了進(jìn)一步的學(xué)習(xí),有了更深的理解,我們僅僅學(xué)了幾種簡單的函數(shù),如一次函數(shù)、二次函數(shù)、正比例函數(shù)、反比例函數(shù)、三角函數(shù)等,這些遠(yuǎn)遠(yuǎn)不能滿足我們的需要,隨著科學(xué)的發(fā)展,社會的進(jìn)步,我們還要學(xué)習(xí)許多函數(shù),其中就有指數(shù)函數(shù),為了學(xué)習(xí)指數(shù)函數(shù)的知識,我們必須學(xué)習(xí)實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì),為此,我們必須把指數(shù)冪從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪,因此我們本節(jié)課學(xué)習(xí):指數(shù)與指數(shù)冪的運(yùn)算(3)之無理數(shù)指數(shù)冪,教師板書本節(jié)課的課題。 推進(jìn)新課 新知探究 提出問題 (1)我們知道2=1.414 213 56…,那么1.41,1.414,1.414 2,1.414 21,…,是2的什么近似值?而1.42,1.415,1.414 3,1.414 22,…,是2的什么近似值? (2)多媒體顯示以下圖表:同學(xué)們從上面的兩個表中,能發(fā)現(xiàn)什么樣的規(guī)律? 2的過剩近似值 的近似值 1.5 11.180 339 89 1.42 9.829 635 328 1.415 9.750 851 808 1.414 3 9.739 872 62 1.414 22 9.738 618 643 1.414 214 9.738 524 602 1.414 213 6 9.738 518 332 1.414 213 57 9.738 517 862 1.414 213 563 9.738 517 752 … … 的近似值 2的不足近似值 9.518 269 694 1.4 9.672 669 973 1.41 9.735 171 039 1.414 9.738 305 174 1.414 2 9.738 461 907 1.414 21 9.738 508 928 1.414 213 9.738 516 765 1.414 213 5 9.738 517 705 1.414 213 56 9.738 517 736 1.414 213 562 … … (3)你能給上述思想起個名字嗎? 。4)一個正數(shù)的無理數(shù)次冪到底是一個什么性質(zhì)的數(shù)呢?如,根據(jù)你學(xué)過的知識,能作出判斷并合理地解釋嗎? 。5)借助上面的結(jié)論你能說出一般性的結(jié)論嗎? 活動:教師引導(dǎo),學(xué)生回憶,教師提問,學(xué)生回答,積極交流,及時評價學(xué)生,學(xué)生有困惑時加以解釋,可用多媒體顯示輔助內(nèi)容: 問題(1)從近似值的分類來考慮,一方面從大于2的方向,另一方面從小于2的方向。 問題(2)對圖表的觀察一方面從上往下看,再一方面從左向右看,注意其關(guān)聯(lián)。 問題(3)上述方法實(shí)際上是無限接近,最后是逼近。 問題(4)對問題給予大膽猜測,從數(shù)軸的觀點(diǎn)加以解釋。 問題(5)在(3)(4)的基礎(chǔ)上,推廣到一般的情形,即由特殊到一般。 討論結(jié)果:(1)1.41,1.414,1.414 2,1.414 21,…這些數(shù)都小于2,稱2的不足近似值,而1.42,1.415,1.414 3,1.414 22,…,這些數(shù)都大于2,稱2的過剩近似值。 (2)第一個表:從大于2的方向逼近2時,就從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向逼近。 第二個表:從小于2的方向逼近2時,就從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向逼近。 從另一角度來看這個問題,在數(shù)軸上近似地表示這些點(diǎn),數(shù)軸上的數(shù)字表明一方面從51.4,51.41,51.414,51.414 2,51.414 21,…,即小于的方向接近,而另一方面從51.5,51.42,51.415,51.414 3,51.414 22,…,即大于的方向接近,可以說從兩個方向無限地接近,即逼近,所以是一串有理數(shù)指數(shù)冪51.4,51.41,51.414,51.414 2,51.414 21,…,和另一串有理數(shù)指數(shù)冪51.5,51.42,51.415,51.414 3,51.414 22,…,按上述變化規(guī)律變化的結(jié)果,事實(shí)上表示這些數(shù)的點(diǎn)從兩個方向向表示的點(diǎn)靠近,但這個點(diǎn)一定在數(shù)軸上,由此我們可得到的結(jié)論是一定是一個實(shí)數(shù),即51.4<51.41<51.414<51.414 2<51.414 21<…< <…<51.414 22<51.414 3<51.415<51.42<51.5. 充分表明是一個實(shí)數(shù)。 (3)逼近思想,事實(shí)上里面含有極限的思想,這是以后要學(xué)的知識。 。4)根據(jù)(2)(3)我們可以推斷是一個實(shí)數(shù),猜測一個正數(shù)的無理數(shù)次冪是一個實(shí)數(shù)。 。5)無理數(shù)指數(shù)冪的意義: 一般地,無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實(shí)數(shù)。 也就是說無理數(shù)可以作為指數(shù),并且它的結(jié)果是一個實(shí)數(shù),這樣指數(shù)概念又一次得到推廣,在數(shù)的擴(kuò)充過程中,我們知道有理數(shù)和無理數(shù)統(tǒng)稱為實(shí)數(shù)。我們規(guī)定了無理數(shù)指數(shù)冪的意義,知道它是一個確定的實(shí)數(shù),結(jié)合前面的有理數(shù)指數(shù)冪,那么,指數(shù)冪就從有理數(shù)指數(shù)冪擴(kuò)充到實(shí)數(shù)指數(shù)冪。 提出問題 。1)為什么在規(guī)定無理數(shù)指數(shù)冪的意義時,必須規(guī)定底數(shù)是正數(shù)? 。2)無理數(shù)指數(shù)冪的運(yùn)算法則是怎樣的?是否與有理數(shù)指數(shù)冪的運(yùn)算法則相通呢? (3)你能給出實(shí)數(shù)指數(shù)冪的運(yùn)算法則嗎? 活動:教師組織學(xué)生互助合作,交流探討,引導(dǎo)他們用反例說明問題,注意類比,歸納。 對問題(1)回顧我們學(xué)習(xí)分?jǐn)?shù)指數(shù)冪的意義時對底數(shù)的規(guī)定,舉例說明。 對問題(2)結(jié)合有理數(shù)指數(shù)冪的運(yùn)算法則,既然無理數(shù)指數(shù)冪aα(a>0,α是無理數(shù))是一個確定的實(shí)數(shù),那么無理數(shù)指數(shù)冪的運(yùn)算法則應(yīng)當(dāng)與有理數(shù)指數(shù)冪的運(yùn)算法則類似,并且相通。 對問題(3)有了有理數(shù)指數(shù)冪的運(yùn)算法則和無理數(shù)指數(shù)冪的運(yùn)算法則,實(shí)數(shù)的運(yùn)算法則自然就得到了。 討論結(jié)果:(1)底數(shù)大于零的必要性,若a=-1,那么aα是+1還是-1就無法確定了,這樣就造成混亂,規(guī)定了底數(shù)是正數(shù)后,無理數(shù)指數(shù)冪aα是一個確定的實(shí)數(shù),就不會再造成混亂。 。2)因?yàn)闊o理數(shù)指數(shù)冪是一個確定的實(shí)數(shù),所以能進(jìn)行指數(shù)的運(yùn)算,也能進(jìn)行冪的運(yùn)算,有理數(shù)指數(shù)冪的運(yùn)算性質(zhì),同樣也適用于無理數(shù)指數(shù)冪。類比有理數(shù)指數(shù)冪的運(yùn)算性質(zhì)可以得到無理數(shù)指數(shù)冪的運(yùn)算法則: 、賏r?as=ar+s(a>0,r,s都是無理數(shù))。 、冢╝r)s=ars(a>0,r,s都是無理數(shù))。 ③(a?b)r=arbr(a>0,b>0,r是無理數(shù))。 。3)指數(shù)冪擴(kuò)充到實(shí)數(shù)后,指數(shù)冪的運(yùn)算性質(zhì)也就推廣到了實(shí)數(shù)指數(shù)冪。 實(shí)數(shù)指數(shù)冪的運(yùn)算性質(zhì): 對任意的實(shí)數(shù)r,s,均有下面的運(yùn)算性質(zhì): 、賏r?as=ar+s(a>0,r,s∈R)。 、(ar)s=ars(a>0,r,s∈R)。 、(a?b)r=arbr(a>0,b>0,r∈R)。 應(yīng)用示例 例1利用函數(shù)計算器計算。(精確到0.001) (1)0.32.1;(2)3.14-3;(3);(4) 。 活動:教師教會學(xué)生利用函數(shù)計算器計算,熟悉計算器的各鍵的功能,正確輸入各類數(shù),算出數(shù)值,對于(1),可先按底數(shù)0.3,再按xy鍵,再按冪指數(shù)2.1,最后按=,即可求得它的值; 對于(2),先按底數(shù)3.14,再按xy鍵,再按負(fù)號-鍵,再按3,最后按=即可; 對于(3),先按底數(shù)3.1,再按xy鍵,再按3÷4,最后按=即可; 對于(4),這種無理指數(shù)冪,可先按底數(shù)3,其次按xy鍵,再按鍵,再按3,最后按=鍵。有時也可按2ndf或shift鍵,使用鍵上面的功能去運(yùn)算。 學(xué)生可以相互交流,挖掘計算器的用途。 解:(1)0.32.1≈0.080;(2)3.14-3≈0.032;(3) ≈2.336;(4) ≈6.705. 點(diǎn)評:熟練掌握用計算器計算冪的值的方法與步驟,感受現(xiàn)代技術(shù)的威力,逐步把自己融入現(xiàn)代信息社會;用四舍五入法求近似值,若保留小數(shù)點(diǎn)后n位,只需看第(n+1)位能否進(jìn)位即可。 例2求值或化簡。 (1)a-4b23ab2(a>0,b>0); (2)(a>0,b>0); (3)5-26+7-43-6-42. 活動:學(xué)生觀察,思考,所謂化簡,即若能化為常數(shù)則化為常數(shù),若不能化為常數(shù)則應(yīng)使所化式子達(dá)到最簡,對既有分?jǐn)?shù)指數(shù)冪又有根式的式子,應(yīng)該把根式統(tǒng)一化為分?jǐn)?shù)指數(shù)冪的形式,便于運(yùn)算,教師有針對性地提示引導(dǎo),對(1)由里向外把根式化成分?jǐn)?shù)指數(shù)冪,要緊扣分?jǐn)?shù)指數(shù)冪的意義和運(yùn)算性質(zhì),對(2)既有分?jǐn)?shù)指數(shù)冪又有根式,應(yīng)當(dāng)統(tǒng)一起來,化為分?jǐn)?shù)指數(shù)冪,對(3)有多重根號的式子,應(yīng)先去根號,這里是二次根式,被開方數(shù)應(yīng)湊完全平方,這樣,把5,7,6拆成(3)2+(2)2,22+(3)2,22+(2)2,并對學(xué)生作及時的評價,注意總結(jié)解題的方法和規(guī)律。 解:(1)a-4b23ab2= =3b46a11 。 點(diǎn)評:根式的運(yùn)算常;蓛绲倪\(yùn)算進(jìn)行,計算結(jié)果如沒有特殊要求,就用根式的形式來表示。 一、單元教學(xué)內(nèi)容 (1)算法的基本概念 (2)算法的基本結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu) (3)算法的基本語句:輸入、輸出、賦值、條件、循環(huán)語句 二、單元教學(xué)內(nèi)容分析 算法是數(shù)學(xué)及其應(yīng)用的重要組成部分,是計算科學(xué)的重要基礎(chǔ)。隨著現(xiàn)代信息技術(shù)飛速發(fā)展,算法在科學(xué)技術(shù)、社會發(fā)展中發(fā)揮著越來越大的作用,并日益融入社會生活的許多方面,算法思想已經(jīng)成為現(xiàn)代人應(yīng)具備的一種數(shù)學(xué)素養(yǎng)。需要特別指出的是,中國古代數(shù)學(xué)中蘊(yùn)涵了豐富的算法思想。在本模塊中,學(xué)生將在中學(xué)教育階段初步感受算法思想的基礎(chǔ)上,結(jié)合對具體數(shù)學(xué)實(shí)例的分析,體驗(yàn)程序框圖在解決問題中的作用;通過模仿、操作、探索,學(xué)習(xí)設(shè)計程序框圖表達(dá)解決問題的過程;體會算法的基本思想以及算法的重要性和有效性,發(fā)展有條理的思考與表達(dá)的.能力,提高邏輯思維能力 三、單元教學(xué)課時安排: 1、算法的基本概念3課時 2、程序框圖與算法的基本結(jié)構(gòu)5課時 3、算法的基本語句2課時 四、單元教學(xué)目標(biāo)分析 1、通過對解決具體問題過程與步驟的分析體會算法的思想,了解算法的含義 2、通過模仿、操作、探索,經(jīng)歷通過設(shè)計程序框圖表達(dá)解決問題的過程。在具體問題的解決過程中理解程序框圖的三種基本邏輯結(jié)構(gòu):順序、條件、循環(huán)結(jié)構(gòu)。 3、經(jīng)歷將具體問題的程序框圖轉(zhuǎn)化為程序語句的過程,理解幾種基本算法語句:輸入、輸出、斌值、條件、循環(huán)語句,進(jìn)一步體會算法的基本思想。 4、通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。 五、單元教學(xué)重點(diǎn)與難點(diǎn)分析 1、重點(diǎn) (1)理解算法的含義(2)掌握算法的基本結(jié)構(gòu)(3)會用算法語句解決簡單的實(shí)際問題 2、難點(diǎn) (1)程序框圖(2)變量與賦值(3)循環(huán)結(jié)構(gòu)(4)算法設(shè)計 六、單元總體教學(xué)方法 本章教學(xué)采用啟發(fā)式教學(xué),輔以觀察法、發(fā)現(xiàn)法、練習(xí)法、講解法。采用這些方法的原因是學(xué)生的邏輯能力不是很強(qiáng),只能通過對實(shí)例的認(rèn)真領(lǐng)會及一定的練習(xí)才能掌握本節(jié)知識。 七、單元展開方式與特點(diǎn) 1、展開方式 自然語言→程序框圖→算法語句 2、特點(diǎn) (1)螺旋上升分層遞進(jìn)(2)整合滲透前呼后應(yīng)(3)三線合一橫向貫通(4)彈性處理多樣選擇 八、單元教學(xué)過程分析 1.算法基本概念教學(xué)過程分析 對生活中的實(shí)際問題通過對解決具體問題過程與步驟的分析(喝茶,如二元一次方程組求解問題),體會算法的思想,了解算法的含義,能用自然語言描述算法。 2.算法的流程圖教學(xué)過程分析 對生活中的實(shí)際問題通過模仿、操作、探索,經(jīng)歷通過設(shè)計流程圖表達(dá)解決問題的過程,了解算法和程序語言的區(qū)別;在具體問題的解決過程中,理解流程圖的三種基本邏輯結(jié)構(gòu):順序、條件分支、循環(huán),會用流程圖表示算法。 3.基本算法語句教學(xué)過程分析 經(jīng)歷將具體生活中問題的流程圖轉(zhuǎn)化為程序語言的過程,理解表示的幾種基本算法語句:賦值語句、輸入語句、輸出語句、條件語句、循環(huán)語句,進(jìn)一步體會算法的基本思想。能用自然語言、流程圖和基本算法語句表達(dá)算法, 4.通過閱讀中國古代數(shù)學(xué)中的算法案例,體會中國古代數(shù)學(xué)對世界數(shù)學(xué)發(fā)展的貢獻(xiàn)。 九、單元評價設(shè)想 1.重視對學(xué)生數(shù)學(xué)學(xué)習(xí)過程的評價 關(guān)注學(xué)生在數(shù)學(xué)語言的學(xué)習(xí)過程中,是否對用集合語言描述數(shù)學(xué)和現(xiàn)實(shí)生活中的問題充滿興趣;在學(xué)習(xí)過程中,能否體會集合語言準(zhǔn)確、簡潔的特征;是否能積極、主動地發(fā)展自己運(yùn)用數(shù)學(xué)語言進(jìn)行交流的能力。 2.正確評價學(xué)生的數(shù)學(xué)基礎(chǔ)知識和基本技能 關(guān)注學(xué)生在本章(節(jié))及今后學(xué)習(xí)中,讓學(xué)生集中學(xué)習(xí)算法的初步知識,主要包括算法的基本結(jié)構(gòu)、基本語句、基本思想等。算法思想將貫穿高中數(shù)學(xué)課程的相關(guān)部分,在其他相關(guān)部分還將進(jìn)一步學(xué)習(xí)算法 【高中數(shù)學(xué)教案】相關(guān)文章: 高中數(shù)學(xué)教案05-20 高中數(shù)學(xué)教案01-21 高中數(shù)學(xué)教案范文06-29 初中數(shù)學(xué)教案04-15高中數(shù)學(xué)教案15