- 相關推薦
小學六年級數(shù)學《圓錐的體積》教案
作為一位兢兢業(yè)業(yè)的人民教師,總不可避免地需要編寫教案,教案是實施教學的主要依據(jù),有著至關重要的作用。那么什么樣的教案才是好的呢?下面是小編為大家整理的小學六年級數(shù)學《圓錐的體積》教案 ,希望對大家有所幫助。
小學六年級數(shù)學《圓錐的體積》教案 1
教學目標
1、使學生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
教學重點
圓錐體體積計算公式的推導過程.
教學難點
正確理解圓錐體積計算公式.
教學步驟
一、鋪墊孕伏
1、提問:
(1)圓柱的體積公式是什么?
(2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高.
2、導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2、學生分組實驗
3、學生匯報實驗結果(課件演示:圓錐體的體積1、2、3、4、5) 1 2 3 4 5
①圓柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
4、引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的`3倍或圓錐的體積是和它等底等高圓柱體積的 .
板書:
5、推導圓錐的體積公式:用字母表示圓錐的體積公式.板書:
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
(二)教學例1
1、例1 一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學生獨立計算,集體訂正.
板書:
答:這個零件的體積是76立方厘米.
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
(1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的底面直徑和高,求體積.
。3)已知圓錐的底面周長和高,求體積.
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
(三)教學例2
1、例2 在打谷場上,有一個近似于圓錐的小麥堆,測得底面直徑是4米,高是1.2米.每立方米小麥約重735千克,這堆小麥大約有多少千克?(得數(shù)保留整千克)
思考:這道題已知什么?求什么?
要求小麥的重量,必須先求什么?
要求小麥的體積應怎么辦?
這道題應先求什么?再求什么?最后求什么?
2、學生獨立解答,集體訂正.
小學六年級數(shù)學《圓錐的體積》教案 2
教學內容
教科書第40~41頁例2,練習九第3~7題。
1.使學生進一步理解并掌握圓錐體積的計算公式,能較熟練地運用圓錐的體積公式解決問題。
2.在解決問題的過程中,學會思考,增強思維的靈活性,培養(yǎng)學生有序思考的習慣。
3.在探究問題中,發(fā)展學生的空間觀念。
運用圓錐體積的計算方法解決生活中的問題。
靈活運用圓錐的體積計算公式解決問題。
小黑板
一、復習引入課題
教師:怎樣計算圓錐的體積?
學生回答,教師板書體積公式:V=13SH
教師:誰能說說圓錐的體積計算公式是怎么推導出來的?
抽學生簡要敘述圓錐的推導過程。
教師:要求圓錐的體積,應該知道哪些條件?
讓學生弄清要求圓錐的體積應該知道圓錐的`底面積和高。
教師:這節(jié)課我們就利用圓錐體積的計算方法解決生活和學習中常見的數(shù)學問題。
板書課題:圓錐的體積二
二、探究新知
1.教學例2
教師用投影儀出示例2。
一煤堆的底面周長18.84M,高1.8M,這個煤堆近似一個圓錐體。準備用載重5噸的車來運。一次運走這堆煤,需要多少輛車?(1M3煤重1.4噸)
教師要求學生帶著問題理解題意。用投影儀出示問題。
。1)這道題講的是什么事情?知道哪些條件?要求什么問題?
(2)要求這堆煤的質量,必須先求什么?
(3)要求煤的體積應該怎么辦?
。4)這題應先求什么?再求什么?最后求什么?
教師鼓勵學生獨立思考,教師適時點撥。
反饋:要求學生用完整的語言敘述題意。
教師抽學生敘述思考過程,要求語言簡潔,思路清晰。
在反饋過程中,盡量多抽幾個學生敘述。
通過討論,使學生明白,這題的關鍵是求出圓錐形煤堆的體積,也就求出了煤堆的質量。
教師抽學生上臺板算。
板書:
煤堆的底面積:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的體積:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(輛)答:……
教師:最后的結果為什么要取整數(shù)部分再加1?
讓學生明白裝了4輛車后,剩下的雖然不夠裝一車,仍然要用一輛車裝,因此要取整數(shù)。
教師:在實際生活和學習中,經(jīng)常會遇到不知道底面積的情況,這時怎樣求圓錐的體積?
2.小結
要求圓錐的體積必須知道底面積和高,如果只知道底面半徑、底面直徑或底面周長和高,要先算出圓錐的底面積,再利用圓錐的體積公式求出圓錐的體積。學會具體問題具體分析。
三、鞏固練習
1.教師用投影儀出示教科書第42頁第3題
觀察圖形,獨立解答。抽二生上臺板算。
讓學生理解此題應先算出圓錐的底面積,才能求出容器的體積。
2.解答教科書第42頁第4題
學生獨立解答,抽生反饋說出思考過程。
通過這一題的練習,體會圓錐與圓柱之間的關系。
3.解答練習九第6題
學生獨立完成,小組交流,展示思考過程,先算什么,再算什么。解答此題的關鍵是抓住體積不變進行解答。
4.發(fā)展練習
有一個底面周長是31.4DM,高9DM的圓錐形容器里裝滿了黃豆,現(xiàn)在要把這些黃豆放入另一個高9DM的圓柱形容器里,剛好裝滿。這個圓柱形容器的底面直徑有多大?
教師引導學生讀題,理解題意。
弄清已知條件和問題,根據(jù)條件尋找中間問題。明白先算什么,再算什么。
學生小組內交流,探討解決方案。
反饋:學生用完整清晰的語言敘述解題思路。
弄清解決這題的關鍵是抓住黃豆的體積不變,即圓柱和圓錐的體積相等。這是解答此題的突破口。教科書練習九第5題,第7題。教師:今天這節(jié)課我們學了什么知識?通過這節(jié)課的學習,對圓錐的體積計算更熟悉了。知道圓錐和圓柱的知識與我們的生活息息相關,在解決實際問題時,應有序思考,靈活運用知識。
例2……
煤堆的底面積:3.14×(18.842×3.14)2=3.14×9=28.26(M2)
煤堆的體積:13×28.26×1.8=16.956(M3)
1.4×16.956÷5≈5(輛)答:
小學六年級數(shù)學《圓錐的體積》教案 3
教學內容:
冀教版小學數(shù)學六年級下冊第40~42頁。
教學目標:
1、知識與技能:知道圓錐的各部分名稱,探索并掌握圓錐的體積公式,會用公式計算圓錐的體積。
2、過程與方法:通過觀察、討論、實驗等活動,經(jīng)歷認識圓錐和探索圓錐體積計算公式的過程
3、情感態(tài)度與價值觀:積極參加數(shù)學活動,了解圓錐和圓柱之間的聯(lián)系獲得探索數(shù)學公式的活動經(jīng)驗。
教學重點:
了解圓錐的特點,探索并理解圓錐體積的計算公式會用公式計算圓錐的體積。
教學難點:
理解圓錐的高和圓錐體積公式中Sh表示的實際意義。
教具學具:
1、等底等高的圓柱和圓錐型容器,一些沙子。
2、多媒體課件。
教學流程:
一、炫我兩分鐘
主持學生指名叫學生回答下列問題
1.圓柱有幾個面?各有什么特點?
2.怎樣計算圓柱的體積?
學生回答問題。
【設計意圖:通過學生主持炫我兩分鐘,使學生復習以前學過的相關知識,在輕松愉快的氛圍中自然引入本節(jié)所學知識!
二、創(chuàng)設情境
1.教師先出示一個圓柱形容器,提問:如果想知道這個容器的容積,怎么辦?
2.出示問題情境
最近老師家準備裝修,準備了一堆沙子,可是老師遇到了一個難題,大家和我一起解決好嗎?(出示沙堆圖片),這堆沙子的底面半徑是2米,高是1.5米,工人告訴我要用6立方米沙子,我不知道我準備的這些沙子夠不夠?怎樣計算這堆沙子的`體積呢?今天我們就一起來研究一下圓錐體積的計算方法。(板書課題)
【設計意圖:在談話、創(chuàng)設問題情境的過程中,引起學生的認知沖突,從而產(chǎn)生求知欲望!
三、探究新知
嘗試小研究一(課前):了解圓錐的特點
1.觀察圓錐形的物體或圖片,它們有哪些特點?
我的發(fā)現(xiàn)
2.圓錐由1個( )面和1個( )面2個面組成,圓錐的底面是一個( ) ,圓錐的側面是一個( ) 。
3.從圓錐頂點到底面圓心的距離是圓錐的( ),用字母( )表示。
小學六年級數(shù)學《圓錐的體積》教案 4
教學內容:教材第16~19頁圓錐的認識和體積計算、例1。
教學要求:
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。
教具準備:長方體、正方體、圓柱體等,根據(jù)教材第167頁自制的圓錐,演示測高、等底、等高的教具,演示得出圓錐體積等于等底等高圓柱體積的的教具。
教學重點:掌握圓錐的特征。
教學難點:理解和掌握圓錐體積的計算公式。
教學過程:
一、鋪墊孕伏:
1.說出圓柱的體積計算公式。
2.我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常?吹较旅嬉恍┪矬w(出示教材第16頁插圖)。這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)
二、自主探究:
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第16頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1)圓錐的底面是個圓,圓錐的側面是一個曲面。
(2)認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?
4.學生練習。
口答練習三第1題。
5.教學圓錐高的測量方法。(見課本第17頁有關內容)
6.讓學生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第18頁上面的圖)
(2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看,你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的體積是與它等底等高的圓柱體體積的。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的`沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗,得出只有等底等高的圓錐才是圓柱體積的。
(5)啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積=底面積高
用字母表示:V=Sh
(6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以?
8.教學例l
(1)出示例1
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、鞏固練習
1.做練習三第2題。
學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
2.做練習三第4題。學生書面練習,小組交流,集體訂正。
四、課堂小結
這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
五、課堂作業(yè)
練習三第3題及數(shù)訓。
六、板書:
圓錐
圓錐的特征:底面是圓,
側面是一個曲面,展開是一個扇形。
它有一個頂點和一條高。
圓柱的體積=底面積高
圓錐的體積=圓柱體積
圓錐的體積=底面積高V=Sh
小學六年級數(shù)學《圓錐的體積》教案 5
目標:
1、理解和掌握圓錐體體積的計算方法,并能運用公式求圓錐體的體積,并能解決簡單的實際問題。
2、通過動手實踐,自主探求圓錐體積的計算方法,培養(yǎng)學生初步的邏輯推理能力和創(chuàng)新意識,發(fā)展空間觀念。
3、激發(fā)學生熱愛生活,勇于探索、樂于與人合作的情趣。
重點:掌握圓錐體積的方法
難點:公式的推導
準備:沙,圓柱教具若干個,圓錐一個,其中要有一組等底等高的圓柱和圓錐
教程:
一、準備
同學們,我們以前研究過一些立體圖形,如長方體,正方體,圓柱體,它們的體積各是怎樣計算的呢?
二、誘發(fā)
課件演示稻谷豐收的景象。師述:稻谷豐收了,農(nóng)民伯伯忙著收割稻谷,他們把收好的稻谷堆成一個這樣的圖形(圓錐形谷堆),同學們你們認識嗎?你能算出這堆稻谷的體積嗎?它和圓柱的體積有什么聯(lián)系呢?這就是我們這節(jié)課要學習的內容。
三、探究釋疑
1、初次猜想
⑴根據(jù)我們所學過的內容,請同學們猜一猜,圓錐的體積應該怎樣計算?
⑵圓錐的體積是否能用“底面積×高”來計算呢
、菍W生通過觀察,發(fā)現(xiàn)“底面積×高”不是圓錐的體積,而是與它等底等高的圓柱的體積。
2、再次猜想
、磐ㄟ^模型演示,
、聘鶕(jù)學生回答,從而得到如下結論:
圓錐的體積= ×圓柱的體積(等底等高)
3、分組實驗進行驗證
、抛寣W生用三個不同的圓柱體和一個圓錐(其中必有一組等底等高的圓柱和圓錐)來進行實驗。
⑵分組討論,分組匯報
圓錐的體積= ×圓柱的體積(等底等高)
用字母表示:V=1/3Sh
4、聯(lián)系實際,進行運用
、懦鍪纠1,學生嘗試練習,集體訂正。
、平虒W例2、課件出示:
麥收季節(jié),張小紅把她家收的小麥堆成一個近似圓錐的麥堆,又給出測量的數(shù)據(jù),讓學生看圖編一道求小麥重量的應用題。
編好后,分組討論計算
學生自己列式計算,集體訂正
四、轉化
1、基礎題
、畔旅嬗兴慕M圖形,你能根據(jù)每組圖形中左圖的'體積,求出右圖的體積嗎?為什么?
24立方米9立方米12立方米
、埔粋圓錐的底面直徑是4厘米,高5厘米,它的體積是多少?
2、提高題
有一塊正方體的木材,它的棱長是9分米,把這塊木料加工成一個最大的圓柱體,被削去的體積是多少?
3、思考題
把一個棱長6厘米的正方體鐵塊和底面直徑、高都是6厘米的圓柱形鐵塊,熔鑄成一個直圓錐體,如果這個直圓錐體和圓柱的底面大小一樣,這個直圓錐體的高是多少厘米?(得數(shù)保留整數(shù))
五、應用
1、基礎題:P44-T3、4
2、提高題:P45-T10
3、思考題:P45-T11、12
小學六年級數(shù)學《圓錐的體積》教案 6
【教學內容】
圓錐的體積(1)(教材第33頁例2)。
【教學目標】
1、參與實驗,從而推導出圓錐體積的計算公式,會運用圓錐的體積公式計算圓錐的體積。
2、培養(yǎng)學生初步的空間觀念,讓學生經(jīng)歷圓錐體積公式的推導過程,體驗觀察、比較、分析、總結、歸納的學習方法。
【重點難點】
圓錐體積公式的推導過程。
【教學準備】
同樣的圓柱形容器若干,與圓柱等底等高的圓錐形容器,與圓柱不等底等高的圓錐形容器若干,沙子和水。
【情景導入】
1、復習舊知,作出鋪墊。
。1)教師用電腦出示一個透明的圓錐。
教師:同學們仔細觀察,圓錐有哪些主要特征呢?
(2)復習高的概念。
A、什么叫做圓錐的高?
B、請一名同學上來指出用橡皮泥制作的圓錐模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)
2、創(chuàng)設情境,引發(fā)猜想。
(1)電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得透不過氣來。一只小白兔去“動物超市”購物,它在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(動畫中圓柱形和圓錐形的雪糕是等底等高的)
。2)引導學生圍繞問題展開討論。
問題一:狐貍貪婪地問:“小白兔,用我手中的雪糕跟你換一個怎么樣?”(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法跟小組交流一下,再向全班同學匯報)
過渡:小白兔究竟跟狐貍怎樣交換才合理呢?學習了“圓錐的體積”后,大家就會弄明白這個問題。
【新課講授】
自主探究,操作實驗
下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積之間的關系,解決電腦博士給我們提出的問題。
出示思考題:通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐的體積之間有什么關系?你們的小組是怎樣進行實驗的?
。1)小組實驗。
A、學生分6組操作實驗,教師巡回指導。(其中4個小組的實驗材料:沙子、水、水槽、量杯、等底等高的'圓柱形和圓錐形容器各一個;另外2個小組的實驗材料:沙子,既不等底也不等高的圓柱形和圓錐形容器各一個,體積有8倍關系的也有5倍關系的。)
B、同組的學生做完實驗后,進行交流,并把實驗結果寫在黑板上。
。2)全班交流。
、俳M織收集信息。
學生匯報時可能會出現(xiàn)下面幾種情況,教師把這些信息逐一呈現(xiàn)在黑板上:
A、圓柱的體積正好等于圓錐體積的3倍。
B、圓柱的體積不是圓錐體積的3倍。
c、圓柱的體積正好等于圓錐體積的8倍。
D、圓柱的體積正好等于圓錐體積的5倍。
E、圓柱的體積是等底等高圓錐體積的3倍。
f、圓錐的體積是等底等高圓柱體積的。
、谝龑д硇畔ⅰV笇W生仔細觀察,把黑板上的信息分類整理。(根據(jù)學生反饋的實際情況靈活進行)
③參與處理信息。圍繞3倍關系情況討論:請這幾個小組同學說出他們是怎樣通過實驗得出這一結論的?哪個小組得出的結論更科學合理一些?
圓錐的體積是等底等高圓柱體積的。(突出等底等高,并請學生拿出實驗用的器材,自己比劃、驗證這個結論)引導學生自主修正另外兩個結論。
。3)誘導反思。為什么有兩個實驗小組的結果不是3倍的關系呢?
。4)推導公式。嘗試運用信息推導圓錐的體積公式。這里的sh表示什么?為什么要乘?要求圓錐體積需要知道幾個條件?
(5)解決問題。童話故事中的小白兔和狐貍怎樣交換才公平合理呢?它需要什么前提條件?(動畫演示:等底等高,之后播放狐貍拿著圓錐形雪糕離去的畫面)
【課堂作業(yè)】
完成教材第34頁“做一做”第1題。
先組織學生在練習本上算一算,然后指名匯報。
答案:13×19×12=76(cm3)
【課堂小結】
教師:請你說說知道哪些條件就可以求圓錐的體積?學生自由交流。
【課后作業(yè)】
1、完成練習冊中本課時的練習。
2、教材第35頁第3、4、5題。
答案:第3題:提示:可以利用直尺、軟尺等工具測量出圓錐形實物的底面直徑(或者底面周長)和高,再根據(jù)V圓錐=1/3sh計算出該物體的體積。
第4題:(1)25、12(2)423、9
第5題:(1)×(2)√(3)×
小學六年級數(shù)學《圓錐的體積》教案 7
教學要求:
l.使學生認識圓錐的特征和各部分名稱,掌握高的特征,知道測量圓錐高的方法。
2.使學生理解和掌握圓錐體積的計算公式,并能正確地求出圓錐的體積。
3.培養(yǎng)學生初步的空間觀念和發(fā)展學生的思維能力。
教具準備:長方體、正方體、圓柱體等,根據(jù)教材第14頁練一練第1題自制的圓錐,演示測高、等底、等高的教具
演示得出圓錐體積等于等底等高圓柱體積的 的教具。
教學重點:掌握圓錐的特征。
教學難點:理解和掌握圓錐體積的計算公式。
教學過程:
一、復習引新
1. 說出圓柱的體積計算公式。
2. 我們已經(jīng)學過了長方體、正方體及圓柱體(邊說邊出示實物圖形)。在日常生活和生產(chǎn)中,我們還常?吹较旅嬉恍┪矬w(出示教材第13頁插圖)。
這些物體的形狀都是圓錐體,簡稱圓錐。我們教材中所講的圓錐,都是直圓錐。今天這節(jié)課,就學習圓錐和圓錐的體積。(板書課題)
二、教學新課
1.認識圓錐。
我們在日常生活中,還見過哪些物體是這樣的圓錐體,誰能舉出一些例子?
2.根據(jù)教材第13頁插圖,和學生舉的例子通過幻燈片或其他方法抽象出立體圖。
3.利用學生課前做好的圓錐體及立體圖通過觀察、手摸認識圓錐的特點。
(1) 圓錐的底面是個圓,圓錐的側面是一個曲面。
(2) 認識圓錐的頂點,從圓錐的頂點到底面圓心的距離是圓錐的高。(在圖上表示出這條高)提問:圖里畫的這條高和底面圓的所有直徑有什么關系?
4.學生練習。
5.教學圓錐高的測量方法。(見課本第13頁有關內容)
6.讓學生根據(jù)上述方法測量自制圓錐的高。
7.實驗操作、推導圓錐體積計算公式。
(1)通過演示使學生知道什么叫等底等高。(具體方法可見教材第14頁上面的圖)
(2)讓學生猜想:老師手中的圓錐和圓柱等底等高,你能猜想一下它們體積之間有怎樣的關系?
(3)實驗操作,發(fā)現(xiàn)規(guī)律。
在空圓錐里裝滿黃沙,然后倒入空圓柱里,看看倒幾次正好裝滿。(用有色水演示也可)從倒的次數(shù)看
你發(fā)現(xiàn)圓錐體積與等底等高的圓柱體積之間有怎樣的關系?得出圓錐的'體積是與它等底等高的圓柱體體積的 。
老師把圓柱里的黃沙倒進圓錐,問:把圓柱內的沙往圓錐內倒三次倒光,你又發(fā)現(xiàn)什么規(guī)律?
(4)是不是所有的圓柱和圓錐都有這樣的關系?教師可出示不等底不等高的圓錐、圓柱,讓學生通過觀察實驗
得出只有等底等高的圓錐才是圓柱體積的 。
(5)啟發(fā)引導推導出計算公式并用字母表示。
圓錐的體積=等底等高的圓柱的體積
=底面積高
用字母表示:V= Sh
(6)小結:要求圓錐體積必須知道哪些條件,公式中的底面積乘以高,求的是什么?為什么要乘以 ?
8.教學例l
(1)出示例1
(2)審題后可讓學生根據(jù)圓錐體積計算公式自己試做。
(3)批改講評。注意些什么問題。
三、鞏固練習
1.做練一練第2題。
指名一人板演,其余學生做在練習本上。集體訂正,強調要乘以 。
2.做練習三第2題。
學生做在課本上。小黑板出示,指名口答,老師板書。錯的要求說明理由。
3.做練習三第3題。
讓學生做在課本上。小黑板出示、指名口答,老師板書。第(3)、(4)題讓學生說說是怎樣想的。
四、課堂小結
這節(jié)課你學習了什么內容?圓錐有怎樣的特征?圓錐的體積怎樣計算?為什么?
五、課堂作業(yè)
練習三第4、5題。
小學六年級數(shù)學《圓錐的體積》教案 8
教學內容:教科書第52頁練習十二的第69題。
教學目的:通過練習,使學生進一步熟悉圓錐的體積計算。
教學過程:
一、復習
1.圓錐的體積公式是什么?
2.填空。
(1)一個圓錐的體積是與它等底等高的圓柱體積的
。2)圓柱的體積相當于和它等底等高的圓錐體積的( )倍。
(3)把一個圓柱削成一個最大的圓錐,削去部分的體積相當于圓柱的 ,相當 于圓錐的( )倍。
二、課堂練習
1.做練習十二的第6題。
教師出示一個圓錐形物體,讓學生想一想怎樣測量才能計算出它的體積:
讓學生分組討論一下,然后各自讓一名學生說說討論的結果,最后歸納出幾種行之有效的測量方法。例如,要求一個圓錐物體的體積,可以先用軟尺量出底面圓的周長,再求出底面的半徑,進而求出底面積,然后用書上介紹的方法,用直尺和三角板
測量出圓錐的高,這樣就可以求出圓錐的體積。
2.做練習十二的第7題。
讀題后,教師可以先后提問:
這道題已知什么?求什么?
要求這堆沙的重量,應該先求什么?怎樣求?
指名學生回答后,讓學生做在練習本上,做完后集體訂正。
3.做練習十二的第8題。
讀題后,教師可提出以下問題:
這道題要求的.是什么?
要求這段鋼材重多少千克,應該先求什么?怎樣求?
能直接利用題目中的數(shù)值進行計算嗎?為什么?
題目中的單位不統(tǒng)一,應該怎樣統(tǒng)一?
分別指名學生回答后,要使學生明白這里要先將2米改寫成200厘米,再利用圓柱的體積計算公式算出鋼材的體積是多少立方厘米,然后再求出它的重量。最后計算出的結果還應把克改寫成千克。
4.做練習十二的第9題。
讀題后,教師提問:這道題要求糧倉裝小麥多少噸,應該先求什么?
要使學生明白,應該先求2.5米高的小麥的體積,而不是求糧倉的體積。
讓學生獨立做在練習本上,做完后集體訂正。
三、選做題
讓學有余力的學生做練習十二的第10*、11*、12*題。
1.練習十二的第10*題。
教師:這道題要求圓錐的體積.但是題目中沒有告訴底面積,而只是已知底面周長和高。請大家想一想,應該怎樣求出底面積?
引導學生利用C=2r可以得到r= 。再利用SR,就可以求得S=( )。再利用圓錐的體積公式就可以求出其體積。
2.練習十二的第11*題。
這是一道有關圓柱、圓錐體積的比例應用題。
可以用列方程來解答。利用題目中圓錐和圓柱的體積之比,可以建立一個比例式。
設圓柱的高為x厘米。
=
X=9。6
(注意:由于圓錐和圓柱的底面積S都相等,所以計算中可以先把S約去。)
3.練習十二的第12題。
這道題是拆分組合圖形,引導學生仔細分析圖形,不難看出它是由等底的圓柱和圓錐組合而成的:從圖中可以看出,圓柱和圓錐的底面直徑都是16厘米,而圓柱的高是4厘米,圓錐的高是17厘米。然后再根據(jù)圓的面積公式及圓柱和圓錐的體積公式,就可以求出這個組合圖形的體積了。
小學六年級數(shù)學《圓錐的體積》教案 9
教學內容:教材第20頁例2、練一練。
教學要求:使學生進-步掌握圓錐的體積計算方法,能根據(jù)不同的條件計算圓錐的體積,能應用圓錐體積公式解決-些簡單的實際問題:
教學重點:進-步掌握圓錐的體積計算方法。
教學難點:根據(jù)不同的條件計算圓錐的體積。
教學過程:
一.鋪墊孕伏:
1.口算。
2.復習體積計算。
(1)提問:圓錐的體積怎樣計算?
(2)口答下列各圓錐的.體積:①底面積3平方分米,高2分米。
、诘酌娣e4平方厘米,高4.5厘米。
3.引入新課。
今天這節(jié)課,我們練習圓錐體積的計算,通過練習,還要能應用圓錐體積計算的方法解決一些簡單的實際問題。
二、自主探究:
l.教學例2。
出示例題,讓學生讀題。提問:你們認為這道題要先求什么,再求這堆沙的重量?讓學生說說為什么要先求體積,才能求這堆沙的重量?這里底面直徑和高的數(shù)據(jù)怎樣獲得?指名板演,其他學生做在練習本上,集體訂正。
2.組織練習。
(1)做練一練。
指名一人板演,其余學生做在練習本上,集體訂正。
(2)討論練習三第6題:圓柱和圓錐的體積和高分別相等,那么,圓柱的底面積和圓錐的底面積有什么關系?這道題,已知圓柱底面的周長,先求出什么?在怎樣?理清思路后
學生做在練習本上。集體訂正。
(3)討論練習三第7題。
底面周長相等,底面積就相等嗎?
三、課堂小結
這節(jié)課練習了圓錐的體積計算和應用:計算體積需要知道底面積和高。如果沒有告訴底面積,我們要先求半徑算出底面積,再計算體積。應用圓錐體積計算.有時候還可以計算出圓錐形物體的重量。
四、布置作業(yè)
1.練習三第5題及數(shù)訓。
2.出示圓錐形模型,提問:你有什么辦法算山它的體積嗎,需要測量哪些數(shù)據(jù)?怎樣測量直徑和高。請同學們回去測量你用第167頁圖制作的圓錐,求出它的體積來。
3.思考練習三第8、9題。
小學六年級數(shù)學《圓錐的體積》教案 10
一、學習目標
(一)學習內容
《義務教育教科書數(shù)學》(人教版)六年級下冊第33—34頁的例2和例3。例2是以探索圓錐的體積與和它等底等高的圓柱體積之間的關系為例,讓學生在探究過程中獲得數(shù)學活動經(jīng)驗。例3則是在例2的基礎上運用圓錐的體積公式解決實際問題,豐富解決問題的策略,感受數(shù)學與生活密不可分的聯(lián)系。
(二)核心能力
在探索圓錐的體積與和它等底等高的圓柱體積之間的關系的過程中,滲透轉化思想,發(fā)展推理能力。
。ㄈ⿲W習目標
1.借助已有的知識經(jīng)驗,通過觀察、猜測、實驗,探求出圓錐體積的計算公式,并能運用公式正確地解決簡單的實際問題。
2.在圓錐體積計算公式的推導過程中,進一步理解圓錐與圓柱的聯(lián)系,發(fā)展推理能力。
。ㄋ模⿲W習重點
圓錐體積公式的理解,并能運用公式求圓錐的體積。
。ㄎ澹⿲W習難點
圓錐體積公式的推導
。┡涮踪Y源
實施資源:《圓錐的體積》名師課件、若干同樣的圓柱形容器、若干與圓柱等底等高和不等底等高的圓錐形容器,沙子和水
二、教學設計
(一)課前設計
1.復習任務
。1)我們學過哪些立體圖形?它們的體積計算公式分別是什么?請你整理出來。
。2)這些立體圖形的體積計算公式是怎么推導的?運用了什么方法?請整理出來。
設計意圖:通過復習物體的體積公式以及圓錐體積的推導,深化轉化思想在生活中的應用,也為圓錐體積的推導埋下伏筆。
(二)課堂設計
1.情境導入
。ǔ鍪旧扯眩
師:你們有辦法知道這個沙堆的體積嗎?
學生自由發(fā)言,提出各種辦法。
預設:把它放進圓柱形的容器里,測量出圓柱的底面積和高就可以知道等等
師:能不能像其它立體圖形一樣,探究出一個公式來求圓錐的體積呢?這節(jié)課我們來研究。板書課題
設計意圖:利用情境引入,激發(fā)學生求知的欲望,引出求圓錐體積公式的必要性。
2.問題探究
。1)觀察猜想
師:你們覺得,圓錐的體積和我們認識的哪種立體圖形的體積可能有關?為什么?
學生自由發(fā)言。
。▓A柱,圓柱的底面是圓,圓錐的底面也是圓……)
師:認真觀察,它們之間的體積會有什么關系?(出示圓柱、圓錐的教具)
學生猜想。
。2)操作驗證
師:圓錐的體積究竟和圓柱的體積有什么關系?請同學們親自驗證。
實驗用具:教師準備等底等高和不等底等高的'各種圓柱、圓錐模具,一些水。
實驗要求:各組根據(jù)需要先上臺選用實驗用具,然后小組成員分工合作,做好實驗數(shù)據(jù)的收集和整理。
1號圓錐2號圓錐3號圓錐
次數(shù)
與圓柱是否等底等高
學生選過實驗用具后進行試驗,教師巡視,發(fā)現(xiàn)問題及時指導,收集有用信息。
。3)交流匯報
①匯報實驗結果
各組匯報實驗結果。
、诜治鰯(shù)據(jù)
師:觀察全班實驗的數(shù)據(jù),你能發(fā)現(xiàn)什么?
(大部分實驗的結果是能裝下三個圓錐的水,也有兩次多或四次等)
師:什么情況下,圓柱剛好能裝下三個圓錐的水?
各組互相觀察各自的圓柱和圓錐,發(fā)現(xiàn)只有在等底等高的情況下,圓柱的體積是與它等底等高圓錐體積的3倍。也可以說成圓錐的體積是和它等底等高的圓柱的體積的三分之一。
師:是不是所有符合等底等高條件的圓柱、圓錐,它們的體積之間都具有這種關系呢?
老師用標準教具裝沙土再演示一次,加以驗證。
、蹥w納小結
師:誰能來總結一下,通過實驗我們得到的結果是什么?
。4)公式推導
師:你能把上面的試驗結果用式子表示嗎?(學生嘗試)
老師結合學生的回答板書:
圓錐的體積公式及字母公式:
圓錐的體積=×圓柱的體積
。健恋酌娣e×高
S=sh
師:在探究圓錐體積公式的過程中,你認為哪個條件最重要?(等底等高)
進一步強調等底等高的圓錐和圓柱才存在這種關系。
設計意圖:通過觀察、猜測,讓學生感知圓錐的體積與圓柱體積之間存在著一定的關系,滲透轉化的思想。再通過對實驗數(shù)據(jù)的分析,進一步感知圓錐的體積是和它等底等高的圓柱的體積的三分之一,在這一過程中,發(fā)展學生的推理能力。
考查目標1、2
(5)實踐應用
師:還記得這堆沙子嗎?如果給你了它的高和底面的直徑,你能算出這堆沙的體積大約是多少?如果每立方米沙子重1.5t,這堆沙子大約重多少噸?(得數(shù)保留兩位小數(shù)。)
師:要求沙堆的體積需要已知哪些條件?
。ㄓ捎谶@堆沙堆近似圓錐形,所以可利用圓錐的體積公式來求,需先已知沙堆的底面積和高)
學生試做后交流匯報。
已知圓錐的底面直徑和高,可以直接利用公式
V=π()h來求圓錐的體積。
師:在計算過程中我們要注意什么?為什么?
注意要乘以,因為通過實驗,知道圓錐的體積等于與它等底等高的圓柱體積的。
3.鞏固練習
。1)填空。
①圓柱的體積是12m,與它等底等高的圓錐的體積是()m。
、趫A錐的體積是2.5m,與它等底等高的圓柱的體積是()m。
、蹐A錐的底面積是3.1m2,高是9m,體積是()m。
。2)判斷,并說明理由。
①圓錐的體積等于圓柱體積的。()
②圓錐的體積等于和它等底等高的圓柱體積的3倍。()
(3)課本第34頁的做一做。
①一個圓錐形的零件,底面積是19cm2,高是12cm,這個零件的體積是多少?
②一個用鋼鑄造成的圓錐形鉛錘,底面直徑是4cm,高是5cm。每立方厘米鋼大約重7.8g。這個鉛錘重多少克?(得數(shù)保留整數(shù))
4.課堂總結
師:這節(jié)課你收獲了什么?和大家分享一下吧!
圓柱的體積是與它等底等高圓錐體積的3倍;圓錐的體積是與它等底等高圓柱體積的三分之一;V圓錐=V圓柱=Sh。
(三)課時作業(yè)
1.王師傅做一件冰雕作品,要將一塊棱長30厘米的正方體冰塊雕成一個最大的圓錐,雕成的圓錐體積是多少立方厘米?
答案:30÷2=15(厘米)
×3.14×152×30
。235.5×30
。7065(立方厘米)
答:雕成的圓錐的體積是7065立方厘米。
解析:這是一道考察學生空間思維能力的題,要在正方體里面雕一個最大的圓錐,必須滿足圓錐的底面直徑等于正方體的棱長,圓錐的高也要等于正方體的棱長,在實際中感受生活和數(shù)學的緊密聯(lián)系,同時為下面在長方體里放一個最大的圓錐做了鋪墊?疾槟繕1、2
2.看看我們的教室是什么體?(長方體)
要在我們的教室里放一個盡可能大的圓錐體,想一想,可以怎樣放?怎樣放體積最大?(測量教室長12m,寬6m,高4m.先計算,再比較怎樣放體積最大的圓錐體。)
解析:這是一道開放題,有一定的難度,在考察學生對圓錐體積理解的基礎上,又綜合了長方體的知識,對學生的空間想象能力要求比較高。
、僖蚤L寬所在的面為底面做最大的圓錐,此時圓錐的高為4m,底面圓的直徑為6m.
、谝詫捀咚诘拿鏋榈酌孀鲎畲蟮膱A錐,此時圓錐的高為12m,底面圓的直徑為4m.
、垡蚤L高所在的面為底面做最大的圓錐,此時圓錐的高為6m,底面圓的直徑為4m.
以上三種情況計算并加以比較,得出結論?疾槟繕1、2
小學六年級數(shù)學《圓錐的體積》教案 11
教學目標
1、通過練習學生進一步理解、掌握圓錐的特征及體積計算公式。
2、能正確運用公式計算圓錐的體積,并解決一些簡單的實際問題。
3、培養(yǎng)學生認真審題,仔細計算的習慣。
重點:進一步掌握圓錐的'體積計算及應用
難點:圓錐體積公式的靈活運用
教學過程
一、知識回顧
1、前幾節(jié)課我們認識了哪兩個圖形?你能說說有關它們的知識嗎?
2、學生說,教師板書:
圓錐圓柱
特征1個底面2個
扇形側面展開長方形
體積V=1/3SHV=SH
二、提出本節(jié)課練習的內容和目標
三、課堂練習
。ㄒ唬、基本訓練
1、填空課本1----2(獨立完成后校對)
2、圓錐的體積計算
已知:底面積、直徑、周長與高求體積(小黑板出示)
。ǘ⒕C合訓練:
1、判斷
(1)圓錐的體積等于圓柱的1/3
。2)長方體、正方體、圓柱和圓錐的體積公式都可用V=SH
。3)一個圓柱形容器盛滿汽油有2.5升,這個容器的容積就是2.5升
。4)圓錐的體積是否4立方厘米,底面積是6平方厘米,那么高是4厘米
2、應用:練習四第45題任選一題
3、發(fā)展題:獨立思考后校對
四課堂小結:說說本節(jié)課的收獲
小學六年級數(shù)學《圓錐的體積》教案 12
【教學目標】
1、使學生理解求圓錐體積的計算公式.
2、會運用公式計算圓錐的體積.
【教學重點】
圓錐體體積計算公式的推導過程.
【教學難點】
正確理解圓錐體積計算公式.
【教學步驟】
一、鋪墊孕伏
1、提問:
。1)圓柱的體積公式是什么?
。2)投影出示圓錐體的圖形,學生指圖說出圓錐的底面、側面和高.
2、導入:同學們,前面我們已經(jīng)認識了圓錐,掌握了它的特征,那么圓錐的體積怎樣計算呢?這節(jié)課我們就來研究這個問題.(板書:圓錐的體積)
二、探究新知
。ㄒ唬┲笇骄繄A錐體積的計算公式.
1、教師談話:
下面我們利用實驗的方法來探究圓錐體積的計算方法.老師給每組同學都準備了兩個圓錐體容器,兩個圓柱體容器和一些沙土.實驗時,先往圓柱體(或圓錐體)容器里裝滿沙土(用直尺將多余的沙土刮掉),倒人圓錐體(或圓柱體)容器里.倒的時候要注意,把兩個容器比一比、量一量,看它們之間有什么關系,并想一想,通過實驗你發(fā)現(xiàn)了什么?
2、學生分組實驗
3、學生匯報實驗結果(課件演示:圓錐體的體積1、2、3、4、5)
、賵A柱和圓錐的底面積相等,高不相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了一次,又倒了一些,才裝滿.
、趫A柱和圓錐的底面積不相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了兩次,又倒了一些,才裝滿.
、蹐A柱和圓錐的底面積相等,高相等,圓錐體容器裝滿沙土往圓柱體容器里倒,倒了三次,正好裝滿.
4、引導學生發(fā)現(xiàn):
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3.
5、推導圓錐的體積公式:
圓錐的'體積是和它等底等高圓柱體積的1/3
V=1/3Sh
6、思考:要求圓錐的體積,必須知道哪兩個條件?
7、反饋練習
圓錐的底面積是5,高是3,體積是()
圓錐的底面積是10,高是9,體積是()
(二)教學例1
1、例1一個圓錐形的零件,底面積是19平方厘米,高是12厘米.這個零件的體積是多少?
學生獨立計算,集體訂正.
2、反饋練習:一個圓錐的底面積是25平方分米,高是9分米,她它的體積是多少?
3、思考:求圓錐的體積,還可能出現(xiàn)哪些情況?(圓錐的底面積不直接告訴)
。1)已知圓錐的底面半徑和高,求體積.
。2)已知圓錐的底面直徑和高,求體積.
(3)已知圓錐的底面周長和高,求體積.
4、反饋練習:一個圓錐的底面直徑是20厘米,高是8厘米,它的體積體積是多少?
三、全課小結
通過本節(jié)的學習,你學到了什么知識?(從兩個方面談:圓錐體體積公式的推導方法和公式的應用)
四、隨堂練習
1、求下面各圓錐的體積.
。1)底面面積是7.8平方米,高是1.8米.
。2)底面半徑是4厘米,高是21厘米.
。3)底面直徑是6分米,高是6分米.
【板書設計】
圓柱體的體積等于和它等底等高的圓錐體體積的3倍或圓錐的體積是和它等底等高圓柱體積的1/3.
小學六年級數(shù)學《圓錐的體積》教案 13
學情分析
美國教育心理學家奧蘇伯爾說:如果我不得不把教育心理學還原為一條原理的話,影響學習的最重要的原因是學生已經(jīng)知道了什么,我們應當根據(jù)學生原有的知識狀況進行教學。本節(jié)課是學生在認識了圓錐特征的基礎上進行學習的。圓錐高的概念仍是本節(jié)課學習的一個重要知識儲備,因而有必要在復習階段利用直觀教具通過切、摸等活動,幫助學生理解透徹。學生分組操作時,肯定能借助倒水(或沙子)的實驗,親身感受等底等高的圓柱與圓錐體積間的3倍關系。但是他們不易發(fā)現(xiàn)隱藏在實驗中的等底等高的這一條件,這是實驗過程中的一個盲點。為凸現(xiàn)這一條件,可借助體積關系不是3倍的實驗器材,引導學生經(jīng)歷去粗取精、去偽存真、由表及里、層層逼近的過程,進行深度信息加工。
教學過程
一、復習舊知,鋪墊孕伏
1.(電腦出示一個透明的圓錐)仔細觀察,圓錐有哪些主要特征呢?
2.復習高的概念。
。1)什么叫圓錐的高?
。2)請一位同學上來指出用橡皮泥制作的圓錐體模型的高。(提供刀片、橡皮泥模型等,幫助學生進行操作)
評析:
圓錐特征的復習簡明扼要。圓錐高的復習頗具新意,通過動手操作,從而使抽象的高具體化、形象化。
二、創(chuàng)設情境,引發(fā)猜想
1. 電腦呈現(xiàn)出動畫情境(伴圖配音)。
夏天,森林里悶熱極了,小動物們都熱得喘不過氣來。一只小白兔去動物超市購物,在冷飲專柜熊伯伯那兒買了一個圓柱形的雪糕。這一切都被躲在一旁的狐貍看見了,它也去熊伯伯的專柜里買了一個圓錐形的雪糕。小白兔剛張開嘴,滿頭大汗的狐貍拿著一個圓錐形的雪糕一溜煙跑了過來。(圖中圓柱形和圓錐形的雪糕是等底等高的。)
2. 引導學生圍繞問題展開討論。
問題一:狐貍貪婪地問:小白兔,用我手中的雪糕跟你換一個,怎么樣?(如果這時小白兔和狐貍換了雪糕,你覺得小白兔有沒有上當?)
問題二:(動畫演示)狐貍手上又多了一個同樣大小的圓錐形雪糕。(小白兔這時和狐貍換雪糕,你覺得公平嗎?)
問題三:如果你是森林中的.小白兔,狐貍手中的圓錐形雪糕有幾個時,你才肯與它交換?(把你的想法與小組同學交流一下,再向全班同學匯報)
過渡:小白兔究竟跟狐貍怎樣交換才公平合理呢?學習了圓錐的體積后,就會弄明白這個問題。
評析:
數(shù)學課程要關注學生的生活經(jīng)驗和已有的知識體驗,教師在引入新知時,創(chuàng)設了一個有趣的童話情境,使枯燥的數(shù)學問題變?yōu)榛钌纳瞵F(xiàn)實,讓數(shù)學課堂充滿生命活力。學生在判斷公平與不公平中蘊涵了對等底等高圓柱和圓錐體積關系的猜想,他們在這一情境中敢猜想、要猜想、樂猜想,在猜想中交流,在交流中感悟,自然地提出了一個富有挑戰(zhàn)性的數(shù)學問題,從而引發(fā)了學生進一步探究的強烈欲望。
三、自主探索,操作實驗
下面,請同學們利用老師提供的實驗材料分組操作,自己發(fā)現(xiàn)屏幕上的圓柱與圓錐體積間的關系,解決電腦博士給我們提出的問題。
出示思考題:
。1)通過實驗,你們發(fā)現(xiàn)圓柱的體積和圓錐體積之間有什么關系?
。2)你們的小組是怎樣進行實驗的?
1. 小組實驗。
【小學六年級數(shù)學《圓錐的體積》教案 】相關文章:
圓錐的體積小學數(shù)學教案05-28
圓錐的體積教案02-13
[經(jīng)典]圓錐的體積教案11-17
《圓錐的體積》教案08-12
《圓錐的體積》數(shù)學教學反思02-28
圓錐的體積01-16
圓錐的體積教案15篇02-14
圓錐的體積教案(15篇)02-24
圓錐的體積說課稿07-02